matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungstreuer Schätzer
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Erwartungstreuer Schätzer
Erwartungstreuer Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungstreuer Schätzer: Frage zum Minimum
Status: (Frage) beantwortet Status 
Datum: 20:02 Mo 15.01.2007
Autor: mathmetzsch

Aufgabe
Aus dem Intervall [mm] [\theta-\bruch{1}{2},\theta+\bruch{1}{2}]\subseteq\IR [/mm] werden gleichverteilt Zahlen gezogen, insgesamt n-mal. Die Zufallsvariablen sind also [mm] X_{1},...,X_{n}. [/mm] Ist der Schätzer [mm] T=0,5(max(X_{1},...,X_{n})+min(X_{1},...,X_{n})) [/mm] erwartungstreu?

Hallo,

also die Aufgabe ist mir klar. [mm] X_{i} [/mm] ist stetig gleichverteilt und gibt quasi die aus dem Intervall gezogene Zahl aus. Ich muss ja den Erwartungswert auswerten. Zunächst benutze ich mal die Linearität.

[mm] E(T)=E(0,5(max(X_{1},...,X_{n})+min(X_{1},...,X_{n}))=0,5*E(max(X_{1},...,X_{n}))+E(min(X_{1},...,X_{n})) [/mm]

Das mit dem Maximum ist mir wegen der letzten Aufgabe auch klar. Da kann ich ja nun E sogar mit dem Integral berechnen, weil [mm] X_{i} [/mm] ja stetig verteilt ist. Mir ist nicht ganz klar, wie ich die Verteilung für das Minimum angebe. Suche ich dann [mm]P(Y\ge y)=1-P(Y\le y)[/mm]??

Viele Grüße
Daniel

        
Bezug
Erwartungstreuer Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mo 15.01.2007
Autor: luis52


> Mir ist nicht
> ganz klar, wie ich die Verteilung für das Minimum angebe.
> Suche ich dann [mm]P(Y\ge y)=1-P(Y\le y)[/mm]??
>  

Moin Daniel,


so einfach geht's leider nicht.  Die Verteilungsfunktion des Minimums
[mm] $Z=\min\{X_1,...,X_n\}$ [/mm] ist [mm] $H(z)=1-(1-F(z))^n$, [/mm] wobei $F$ die
Verteilungsfunktion der Gleichverteilung im Intervall
[mm] $[\theta-\bruch{1}{2},\theta+\bruch{1}{2}]$ [/mm] ist. Wie kommt man darauf?
Da es schon spaet ist, hier nur ein Tipp:

[mm] $Z=\min\{X_1,...,X_n\}=-\max\{-X_1,...,-X_n\}$ [/mm]

hth        

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]