matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErw. und Var. einer ZV X
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Erw. und Var. einer ZV X
Erw. und Var. einer ZV X < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erw. und Var. einer ZV X: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 23.11.2010
Autor: Ultio

Aufgabe
Bestimmen Sie den Erwartungswert und die varianz einer [mm] P(\lambda)- [/mm] verteilten Zufallsvariablen X.

hallo matheraumler,
könnte mir bei dieser Aufgabe bitte jemand helfen.
Ich habe mir folgende Gedanken dazu gemacht:
Die Dichtefunktion ist
[mm] f(x)=\begin{cases} <\lambda e^{-\lambda x}, & \mbox{für } x > 0 \\ 0, & \mbox{sonst} \end{cases} [/mm]
Die Momente berechnen sich wie folgt:
[mm] m_k [/mm] = [mm] \integral_{-\infty}^{\infty}{x^k f(x) dx} [/mm]
Der erwartungswert ist das erste Moment, d.h. k=1, und die Varianz ist das zweite Moment mit k=2.
Nun ist aber
[mm] m_1 [/mm] = [mm] \integral_{-\infty}^{\infty}{x f(x) dx} [/mm] unbeschränkt mittels partieller Integration.
Ebenso verhält es sich mit:
[mm] m_2 [/mm] = [mm] \integral_{-\infty}^{\infty}{x^2 f(x) dx} [/mm] = [mm] \infty [/mm]


Ist der Ansatz falsch? Welchen Ansatz könnte ich noch wählen?
Vielen Dank im Voraus.
Gruß
Felix


        
Bezug
Erw. und Var. einer ZV X: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Di 23.11.2010
Autor: luis52

Moin

>
> Ist der Ansatz falsch? Welchen Ansatz könnte ich noch
> wählen?

Was ist denn eine $ [mm] P(\lambda)- [/mm] $Verteilung? Wenn es sich um eine Poisson-Verteilung handelt, bist du gaenzlich auf dem Holzweg. Du bearbeitest anscheinend eine Exponentialverteilung.

vg Luis

Bezug
                
Bezug
Erw. und Var. einer ZV X: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Di 23.11.2010
Autor: Ultio

Hallo, danke dir, und wie rechne ich das mit der Poissonverteilung? Ja, das ist sie auch. Denke ich.
Gruß
Felix

Bezug
                        
Bezug
Erw. und Var. einer ZV X: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Di 23.11.2010
Autor: luis52



> Hallo, danke dir, und wie rechne ich das mit der
> Poissonverteilung?

Na dann mach mal einen Anfang ....

vg Luis



Bezug
                                
Bezug
Erw. und Var. einer ZV X: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Mi 24.11.2010
Autor: Ultio

Jetzt hab ich's danke. Und bei uns ist die Poissonverteilung so definiert. Ich musste nur die Summendarstellung nehmen, dann lief alles von allein.
Danke nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]