matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenErstellen einer Jacobi-Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Erstellen einer Jacobi-Matrix
Erstellen einer Jacobi-Matrix < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erstellen einer Jacobi-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Mi 12.07.2006
Autor: moritz123

Aufgabe
Bestimmen Sie die Funktion g o f und berechnen Sie die Funktionalmatrix (Jacobi-Matrix)
[mm] f(x_{1},x_{2},x_{3})=e^{x_{1}}*cos(x_{2})+x_{3} [/mm]
[mm] g(x)=(sin(x),x^2,7+x^3) [/mm]

Hallo!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Zunächst hoffe ich, alles richtig gemacht zu haben - es ist, wie Ihr sicher an obigem Satz erkennen könnt, mein erster Beitrag in diesem Forum.

Nun zur Frage: ich kann das ganze nachvollziehen bis zum Punkt, an dem ich aus der Vereinigung der beiden Funktionen die Jacobi-Matrix bilden soll.

Ich habe bisher folgendes:

[mm] g\circ f=g(f(x_{1},x_{2},x_{3}))= g(e^{x_{1}}*cos(x_{2})+x_{3})=(sin(e^{x_{1}}*cos(x_{2})+x_{3})),(e^{x_{1}}*cos(x_{2})+x_{3})^2, 7+(e^{x_{1}}*cos(x_{2})+x_{3})^3 [/mm]
wobei ich den Ausdruck  
[mm] e^{x_{1}}*cos(x_{2})+x_{3} [/mm]
durch [mm] \alpha [/mm] ersetzt habe - der Einfachheit halber.

Wie stelle ich nun anhand oben angegebener Funktion eine Jacobi-Matrix auf?

Vielen Dank für Eure Hilfe!

        
Bezug
Erstellen einer Jacobi-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Mi 12.07.2006
Autor: Event_Horizon

Die Jacobi-Matrix ist
$ [mm] \pmat{ \bruch{\partial}{\partial x_1}h_1 & \bruch{\partial}{\partial x_1}h_2 & \bruch{\partial}{\partial x_1}h_3 \\ \bruch{\partial}{x_1}h_1 & \bruch{\partial}{\partial x_2}h_2 & \bruch{\partial}{\partial x_2}h_3 \\ \bruch{\partial}{x_3}h_1 & \bruch{\partial}{\partial x_3}h_2 & \bruch{\partial}{\partial x_3}h_3}$ [/mm]

Allerdings mußt du Zeilen und Spalten vertauschen, ich hab das grade falsch eingegeben, wie ich sehe!


Dabei ist h dein länglicher Term. Also, leite jede Komponente von h nach jedem [mm] x_i [/mm] ab, das gibt 9 Ableitungen, die die JM bilden.

Zugegeben, das ist etwas Arbeit...

Bezug
        
Bezug
Erstellen einer Jacobi-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Mi 12.07.2006
Autor: moritz123

Hallo!

danke zunächst für deine Antwort. Leider verstehe ich nicht so ganz was du damit meinst. Könntest Du mir das an meinem Beispiel mal verdeutlichen, indem Du mal ein oder 2 ableitest? Wäre dir wirklich sehr dankbar!

Bezug
                
Bezug
Erstellen einer Jacobi-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Mi 12.07.2006
Autor: Bastiane

Hallo!

> danke zunächst für deine Antwort. Leider verstehe ich nicht
> so ganz was du damit meinst. Könntest Du mir das an meinem
> Beispiel mal verdeutlichen, indem Du mal ein oder 2
> ableitest? Wäre dir wirklich sehr dankbar!

Das ist eigentlich ganz einfach. Es ist ja [mm] (sin(e^{x_{1}}\cdot{}cos(x_{2})+x_{3})),(e^{x_{1}}\cdot{}cos(x_{2})+x_{3})^2, 7+(e^{x_{1}}\cdot{}cos(x_{2})+x_{3})^3 [/mm] dein h, und damit dann:

[mm] \underbrace{(sin(e^{x_{1}}\cdot{}cos(x_{2})+x_{3})}_{=h_1},\underbrace{(e^{x_{1}}\cdot{}cos(x_{2})+x_{3})^2}_{=h_2}, \underbrace{7+(e^{x_{1}}\cdot{}cos(x_{2})+x_{3})^3}_{=h_3} [/mm]

Bildest du jetzt eine der Ableitungen, musst du jeweils jeden Teil nach jeder Variablen ableiten. Also z. B. [mm] h_1 [/mm] nach [mm] x_3 [/mm] abgeleitet sieht dann so aus:

[mm] \bruch{\partial{h_1}}{x_1}=1 [/mm]

der Rest ist ja quasi konstant und fällt beim Ableiten weg.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Erstellen einer Jacobi-Matrix: Fehler in Aufgabe
Status: (Antwort) fertig Status 
Datum: 08:43 Do 13.07.2006
Autor: mathemaduenn

Hallo moritz123,
So macht die Aufgabe auf jeden Fall keinen sinn da die Dimensionen nicht passen. f bildet von [mm] R^3 [/mm] nach R ab g von R nach [mm] R^3 [/mm] also kann man höchsten f(g(x)) bilden nicht aber g(f(x)).
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]