matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenErste Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Erste Ableitung
Erste Ableitung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erste Ableitung: anderer Wert
Status: (Frage) beantwortet Status 
Datum: 20:32 Fr 28.11.2008
Autor: zoj

Aufgabe
[mm] fa(x)=\bruch{-x^{3}+4a}{a*x^{2}} [/mm]

Irgendwie komme ich nicht auf die richtige Lösung.

Ich kriege raus: [mm] fa'(x)=\bruch{-x^{3}+12a^{2}x-8a^{3}}{ax^{3}} [/mm]

Herauskommen sollte:  [mm] fa'(x)=\bruch{-x^{3}-8a^{3}}{ax^{3}} [/mm]

Das [mm] 12a^{2}x [/mm] stört. Ich habe mir die Rechnung genau angeguckt, jedoch keinen Fehler entdeckt.

Was habe ich da falsch gemacht?

        
Bezug
Erste Ableitung: auch ohne Quotientenregel
Status: (Antwort) fertig Status 
Datum: 20:42 Fr 28.11.2008
Autor: Loddar

Hallo zoj!


Ohne Deine konkrete Rechnung können wir Deinen Fehler nicht finden.

Aber um hier die MBQuotientenregel zu umgehen, kannst Du zunächst wie folgt umformen:

[mm] $$f_a(x) [/mm] \ = \ [mm] \bruch{-x^{3}+4a}{a*x^{2}} [/mm] \ = \ [mm] \bruch{-x^{3}}{a*x^{2}}+\bruch{4a}{a*x^{2}} [/mm]  \ = \ [mm] -\bruch{1}{a}*x+4*x^{-2}$$ [/mm]

Gruß
Loddar


Bezug
        
Bezug
Erste Ableitung: Quotientenregel
Status: (Frage) beantwortet Status 
Datum: 01:31 Sa 29.11.2008
Autor: zoj

Aufgabe
Gesucht ist die Ableitung folgender Funktion:

[mm] fa(x)=\bruch{-x^{3}+4a^{3}}{a*x^{2}} [/mm]

Herauskommen sollte:

[mm] fa(x)=\bruch{-x^{3}-8a^{3}}{a*x^{3}} [/mm]

Stattdessen bekomme ich:

[mm] fa(x)=\bruch{-x^{3}+12a^{2}*x-8a^{3}}{a*x^{3}} [/mm]

Was mache ich denn falsch?

Bezug
                
Bezug
Erste Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:55 Sa 29.11.2008
Autor: MathePower

Hallo zoj,

> Gesucht ist die Ableitung folgender Funktion:
>  
> [mm]fa(x)=\bruch{-x^{3}+4a^{3}}{a*x^{2}}[/mm]
>  Herauskommen sollte:
>  
> [mm]fa(x)=\bruch{-x^{3}-8a^{3}}{a*x^{3}}[/mm]
>  
> Stattdessen bekomme ich:
>  
> [mm]fa(x)=\bruch{-x^{3}+12a^{2}*x-8a^{3}}{a*x^{3}}[/mm]
>  
> Was mache ich denn falsch?


Um das herauszufinden, poste bitte Deinen Rechenweg,
wie Du zu diesem Ergebnis gekommen bist.


Gruß
MathePower

Bezug
                        
Bezug
Erste Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:01 Sa 29.11.2008
Autor: zoj

$ [mm] fa(x)=\bruch{-x^{3}+4a^{3}}{a\cdot{}x^{2}} [/mm] $

[mm] u=-x^{3}+4a^{3} [/mm]
[mm] u'=-3x^{2}+12a^{2} [/mm]

[mm] v=ax^{2} [/mm]
v'=2ax

[mm] fa'(x)=\bruch{(-3x^{2}+12a^{2})(ax^{2})-(2ax)(-x^{3}+4a^{3})}{a^{2}x^{4}} [/mm]

[mm] =\bruch{(-3ax^{4}+12a^{3}x^{2})-(-2ax^{4}+8a^{4}x)}{a^{2}x^{4}} [/mm]

[mm] =\bruch{-3ax^{4}+12a^{3}x^{2}+2ax^{4}-8a^{4}x}{a^{2}x^{4}} [/mm]

[mm] =\bruch{-ax^{4}+12a^{3}x^{2}-8a^{4}x}{a^{2}x^{4}} [/mm]

[mm] =\bruch{-x^{3}+12a^{2}x-8a^{3}}{ax^{3}} [/mm]

Das ist meine Rechnung.
Laut Buch ist dieser Term zu viel: [mm] +12a^{2}x [/mm]


Bezug
                                
Bezug
Erste Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 Sa 29.11.2008
Autor: angela.h.b.


> [mm]fa(x)=\bruch{-x^{3}+4a^{3}}{a\cdot{}x^{2}}[/mm]
>  
> [mm]u=-x^{3}+4a^{3}[/mm]
>  [mm]u'=-3x^{2}+12a^{2}[/mm]

Hallo,

diese Ableitung stimmt nicht. Bedenke, daß das a zu behandeln ist, als stünde da irgendeine Zahl. Das a ist zwar beliebig, aber fest, also keine Variable wie das x.

Gruß v. Angela

>  
> [mm]v=ax^{2}[/mm]
>  v'=2ax


Bezug
                                        
Bezug
Erste Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 Sa 29.11.2008
Autor: zoj

Jetzt bin ich aber verwirrt.

Wenn ich: $ [mm] v=ax^{2} [/mm] ableite kommt doch auf jedenfall v'=2ax raus.
Oder nicht?

Bezug
                                                
Bezug
Erste Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Sa 29.11.2008
Autor: angela.h.b.


> Jetzt bin ich aber verwirrt.
>  
> Wenn ich: $ [mm]v=ax^{2}[/mm] ableite kommt doch auf jedenfall
> v'=2ax raus.
>  Oder nicht?

Hallo,

ja, das ist richtig. Du hast hier das a wie eine Zahl behandelt.


In dem  von mir beanstandeten Fall war aber  $ [mm] u(x)=-x^{3}+4a^{3} [/mm] $  abzuleiten.

Wie leitest Du denn [mm] h(x)=x^3 [/mm] + [mm] 4*7^3 [/mm] ab?

Gruß v. Angela


Bezug
                                                        
Bezug
Erste Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Sa 29.11.2008
Autor: zoj

Ahh! OK, jetzt habe ich es verstanden!
Vielen Dank für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]