matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisErste Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Erste Ableitung
Erste Ableitung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erste Ableitung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 02.12.2004
Autor: hamburger0203

Hallo, ich habe eine Frage an Euch alle. Hab ich hier alles richtig gemacht?  Bin nämlich tierisch unsicher!


Berechne die erste Ableitung

f(x)=X² * in x ,x größer als 0  = f´(x)=2x + 1/x Ist das richtig?
f(x)=x³((sinx)²+(cos)²), x aus den Realenzahlen. f'(x)= 3x² * ((2 cosx)+(2-sinx))Ist das richtig?
[mm] f(x)=sin(6x^4+10),x [/mm] aus den Realenzahlen. f'(x)=cos * (24x³) Ist das richtig?

        
Bezug
Erste Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Do 02.12.2004
Autor: baskolii

Du machst da irgendwas falsch.

[mm] f(x)=x^2 [/mm] ln(x) [mm] \Rightarrow f'(x)=2xln(x)+x^2\frac{1}{x} [/mm]
f(x)=x³((sinx)²+(cosx)²) [mm] \Rightarrow f'(x)=3x^2((sinx)²+(cosx)²)+x^3(2sin(x)cos(x)-2cos(x)sin(x)) [/mm]
[mm] f(x)=sin(6x^4+10) \Rightarrow f'(x)=cos(6x^4+10)24x^3 [/mm]

Du solltest dir die Kettenregel nochmal anschauen.

mfg Verena

Bezug
        
Bezug
Erste Ableitung: Weitere Hinweise
Status: (Antwort) fertig Status 
Datum: 20:50 Do 02.12.2004
Autor: e.kandrai

Einige Hinweise zum Ableiten:

Produktregel: hast du ein Produkt aus zwei Funktionen abzuleiten, dann benutz die Produktregel: [mm]f(x)=u(x)*v(x)[/mm] (das werde ich jetzt nur noch mit [mm]f(x)=u \cot v[/mm] abkürzen)  [mm]\Rightarrow[/mm]  [mm]f(x)=u'*v+u*v'[/mm]

Kettenregel: hast du eine Verkettung von Funktionen, so wie [mm]f(x)=g(h(x))[/mm] (also eine Funktion "eingebettet" in einer anderen, so wie bei [mm]sin(x^2)[/mm], [mm]ln(2x+4)[/mm] oder [mm]ln(sin(e^{2x}))[/mm] - das wär sogar eine mehrfache Verkettung), dann leitest du das so ab: [mm]f'(x)=g'(h(x))*h'(x)[/mm].

Die Kettenregel anhand einer Sinusfunktion:
[mm]f(x)=sin(irgendwas)[/mm]  [mm]\Rightarrow[/mm]  [mm]f'(x)=cos(irgendwas)*(irgendwas)'[/mm]

Wichtig ist dabei die Reihenfolge beim Ableiten von sin-cos-Funktionen:

[Dateianhang nicht öffentlich]

Also: nach "cos" wechselt das Vorzeichen immer, nach "sin" nicht.


Und noch ein kleiner Tipp: [mm]sin^2(x)+cos^2(x)=1[/mm] [mm]\forall x \in \IR[/mm]
Und [mm]sin^2(x)[/mm] bedeutet natürlich dasselbe wie [mm](sin(x))^2[/mm].

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]