matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenErmittlung der Koordinaten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Ermittlung der Koordinaten
Ermittlung der Koordinaten < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ermittlung der Koordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 So 30.03.2008
Autor: Post-it

Aufgabe
1. Ermittle die Koordinaten der Punkte P und Q, die von A jeweils den Abstand d haben.
a) A(1|2|-2) und d=9
b) A(12|3|4) und d=2


2. Der Punkt P liegt z Einheiten von A in Richtung [mm] \overrightarrow{BC} [/mm] entfernt. Ermittle die Koordinaten von P.
a) A(2|3), B(0|4), C(4|7) und Z=15
b) A(-1|2|3), B(3|-2|6), C(5|0|7) und z=8

Ich habe schon alles versucht um auf die Koordnaten zu kommen, aber ich komme einfach nicht auf eine Lösung.

        
Bezug
Ermittlung der Koordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 So 30.03.2008
Autor: Andi

Hallo,

> 1. Ermittle die Koordinaten der Punkte P und Q, die von A
> jeweils den Abstand d haben.
>  a) A(1|2|-2) und d=9
>  b) A(12|3|4) und d=2

Es gibt unendlich viele Punkte, welche von A den Abstand d haben.
Das ist nämlich genau die Kugel mit dem Mittelpunkt A und dem Radius d.

Also wenn das die komplette Aufgabenstellung ist,
ist die Aufgabe nicht eindeutig lösbar und du kannst dir einfach zwei Punkte suchen in dem du zu A einen beliebigen Vektor mit der Länge d addierst und subtrahierst, dadurch kommst du auf zu Punkte, welche von A den Abstand d haben.

> 2. Der Punkt P liegt z Einheiten von A in Richtung
> [mm]\overrightarrow{BC}[/mm] entfernt. Ermittle die Koordinaten von
> P.
>  a) A(2|3), B(0|4), C(4|7) und Z=15
>  b) A(-1|2|3), B(3|-2|6), C(5|0|7) und z=8

Ich würde gerne wissen, WAS du versucht hast und wo dein Problem liegt.
Kannst du den Richtungsvektor [mm]\overrightarrow{BC}[/mm] berechnen?
Kannst du diesen Richtungsvektor normieren. Das bedeutet einen Vektor erzeugen, welcher die selber Richtung hat, aber die Länge 1.
Kannst du zu A das z-fache dieses normierten Richtungsvektors addieren?

So ... die Fragen, darf man durchaus als kleines Rezept verstehen.

Viele Grüße,
Andi

Bezug
                
Bezug
Ermittlung der Koordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 So 30.03.2008
Autor: Post-it

[mm] \overrightarrow{BC} [/mm] für a) [mm] \vektor{4 \\ -3} [/mm]
                        b) [mm] \vektor{2 \\ 1} [/mm]  


ich habe versucht den Einheitsvektor zu berechnen, aber da ich zwei bzw. drei Unbekannte habe, komme ich hier auch nicht weiter.
Könntest Du mir bitte eine Teilaufgabe vorrechnenn, sodass ich die Zweite selber rechnen kann?

Bezug
                        
Bezug
Ermittlung der Koordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 So 30.03.2008
Autor: Martinius

Hallo,



> [mm]\overrightarrow{BC}[/mm] für a) [mm]\vektor{4 \\ -3}[/mm]
>                
>          b) [mm]\vektor{2 \\ 1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  

>
>
> ich habe versucht den Einheitsvektor zu berechnen, aber da
> ich zwei bzw. drei Unbekannte habe, komme ich hier auch
> nicht weiter.
> Könntest Du mir bitte eine Teilaufgabe vorrechnenn, sodass
> ich die Zweite selber rechnen kann?  


zu Aufgabe 2a):

Den Richtungsvektor der Gerade bekommst Du aus

$\overrightarrow{BC}=-\vec b + \vec c = -\vektor{0 \\ 4}+\vektor{4 \\ 7}=\vektor{4 \\ 3}$

Dann musst Du ihn noch normieren:

$\vec n = \vektor{\bruch{4}{5} \\ \bruch{3}{5}$

Jetzt kannst Du die Geradengleichung aufstellen:

$g=\vec A + z*\vec n= \vektor{2\\3}+\bruch{z}{5}*\vektor{4 \\ 3}$

Setzt Du nun z = 15 erhältst Du den Punkt

$P= \vektor{2\\3}+\bruch{15}{5}*\vektor{4\\3}=\vektor{14\\12}$

, so ich mich nicht verrechnet habe.


LG, Martinius


Bezug
                                
Bezug
Ermittlung der Koordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 So 30.03.2008
Autor: Post-it


> Dann musst Du ihn noch normieren:
>  
> [mm]\vec n = \vektor{\bruch{4}{5} \\ \bruch{3}{5}[/mm]
>  

Hi,

ich kapiere das normieren nicht. Das Verfahren leuchtet mir nicht ganz ein, ich verstehe nicht wie ihr auf [mm] \overrightarrow{n} [/mm] kommt.

Bezug
                                        
Bezug
Ermittlung der Koordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 So 30.03.2008
Autor: MathePower

Hallo Post-it,

> > Dann musst Du ihn noch normieren:
>  >  
> > [mm]\vec n = \vektor{\bruch{4}{5} \\ \bruch{3}{5}[/mm]
>  >  
>
> Hi,
>  
> ich kapiere das normieren nicht. Das Verfahren leuchtet mir
> nicht ganz ein, ich verstehe nicht wie ihr auf
> [mm]\overrightarrow{n}[/mm] kommt.

Nach dem Normieren hast Du einen Vektor vom Betrag 1:

[mm]\overrightarrow{n}=\bruch{1}{\vmat{\overrightarrow{BC}}} *\overrightarrow{BC}=\bruch{1}{\wurzel{4^{2}+3^{2}}}*\pmat{4 \\ 3}=\bruch{1}{5}*\pmat{4 \\ 3}=\pmat{\bruch{4}{5} \\ \bruch{3}{5}[/mm]

Gruß
MathePower

Bezug
                                                
Bezug
Ermittlung der Koordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 So 30.03.2008
Autor: Post-it

Ok, jetzt habe ich verstanden. Durch normieren bilde ich den Einheitsvektor. Oder?

Bezug
                                                        
Bezug
Ermittlung der Koordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 So 30.03.2008
Autor: MathePower

Hallo Post-it,

> Ok, jetzt habe ich verstanden. Durch normieren bilde ich
> den Einheitsvektor. Oder?

Durch normieren bildest Du einen Vektor vom Betrag 1.

Ich kann jeden Vektor, dessen Betrag > 0 ist, auf den Betrag 1 normieren.

Und der Einheitsvektor gehört eben dazu.

Gruß
MathePower

Bezug
                        
Bezug
Ermittlung der Koordinaten: Normierung
Status: (Antwort) fertig Status 
Datum: 16:11 So 30.03.2008
Autor: Andi

Hallo,
Martinius hat ja schon eine sehr schöne Antwort geschrieben.

Ich möchte nur noch ein paar Sachen zum "Normieren" beitragen.

Der Vektor  [mm] \vektor{4 \\ 3} [/mm] hat die Länge [mm] |x|=\wurzel{x^2+y^2}=\wurzel{4^2+3^2}=5 [/mm]

Er soll aber die Länge 1 haben, deswegen den Vektor durch 5.

Also [mm] \bruch{1}{5}*\vektor{4 \\ 3}=\vektor{\bruch{4}{5} \\ \bruch{3}{5}}. [/mm]
Dieser Vektor hat die Länge 1 (wie du durch nachrechnen bestätigen kannst) aber immer noch die gleiche Richtung.

Viele Grüße,
Andi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]