matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungErmittlg. D für Drachenviereck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Ermittlg. D für Drachenviereck
Ermittlg. D für Drachenviereck < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ermittlg. D für Drachenviereck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Mo 04.03.2013
Autor: Schennii

Aufgabe
Gegeben sind die Punkte A(2/1/0), B(10/-1/0) und C(11/3/0)
Es existiert genau ein D, sodass das Viereck ABCD ein Drachenviereck ist. Berechnen sie die Koordinaten des Punktes D.

ich habe mir überlegt, dass bei einem Drachenviereck die Diagonalen senkrecht aufeinander stehen. Also ist [mm] \overline{AC} [/mm] die Orthogonale zu [mm] \overline{BD}. [/mm] Es gibt also einen Schnittpunkt S.
Die Geradengleichung für die Strecke AC lautet: [mm] x=\vektor{2\\ 1} +s*\vektor{9 \\ 2}. [/mm] Die Geradengleichung für die Strecke BD lautet: [mm] x=\vektor{10\\ -1} +s*\vektor{-2 \\ 9}. [/mm] Durch die 2 Geradengleichungen wollte ich durch ein Lineares Gleichungssystem den Schnittpunkt S berechnen, da [mm] \overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{AB}+ [/mm] 2*  [mm] \overrightarrow{BS} [/mm]
Doch leider bekomme ich einen Punkt S heraus, der laut meiner Skizze nicht funktionieren kann.

Was habe ich falsch gemacht?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ermittlg. D für Drachenviereck: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mo 04.03.2013
Autor: reverend

Hallo Schennii,

ich würde da anders herangehen.

> Gegeben sind die Punkte A(2/1/0), B(10/-1/0) und C(11/3/0)
>  Es existiert genau ein D, sodass das Viereck ABCD ein
> Drachenviereck ist. Berechnen sie die Koordinaten des
> Punktes D.

Denk Dir mal ein Drachenviereck, allerdings kein bestimmtes. Deine Überlegung sollten für jedes Drachenviereck gelten.

Im allgemeinen genügen drei Punkte nicht, um den vierten festzulegen - es sei denn, die drei gegebenen Punkte sind gerade die Eckpunkte eines rechtwinkligen Dreiecks.
In diesem Fall ist der vierte Punkt, der hier gesucht ist, genau das Spiegelbild des Punktes, an dem der rechte Winkel liegt - gespiegelt an der gegenüberliegenden Seite, der Hypotenuse des Dreiecks.

Grüße
reverend

>  ich habe mir überlegt, dass bei einem Drachenviereck die
> Diagonalen senkrecht aufeinander stehen. Also ist
> [mm]\overline{AC}[/mm] die Orthogonale zu [mm]\overline{BD}.[/mm] Es gibt
> also einen Schnittpunkt S.
>  Die Geradengleichung für die Strecke AC lautet:
> [mm]x=\vektor{2\\ 1} +s*\vektor{9 \\ 2}.[/mm] Die Geradengleichung
> für die Strecke BD lautet: [mm]x=\vektor{10\\ -1} +s*\vektor{-2 \\ 9}.[/mm]
> Durch die 2 Geradengleichungen wollte ich durch ein
> Lineares Gleichungssystem den Schnittpunkt S berechnen, da
> [mm]\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{AB}+[/mm]
> 2*  [mm]\overrightarrow{BS}[/mm]
>  Doch leider bekomme ich einen Punkt S heraus, der laut
> meiner Skizze nicht funktionieren kann.
>  
> Was habe ich falsch gemacht?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Ermittlg. D für Drachenviereck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Mo 04.03.2013
Autor: Schennii

ja das habe ich auch schon festgestellt, dass D das Spiegelbild durch B an der Strecke AC ist. doch wie bekomme ich dadurch den Punkt D heraus? Das haben wir leider noch nicht gelernt.

Bezug
        
Bezug
Ermittlg. D für Drachenviereck: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mo 04.03.2013
Autor: Al-Chwarizmi


> Gegeben sind die Punkte A(2/1/0), B(10/-1/0) und C(11/3/0)
>  Es existiert genau ein D, sodass das Viereck ABCD ein
> Drachenviereck ist. Berechnen sie die Koordinaten des
> Punktes D.
>  ich habe mir überlegt, dass bei einem Drachenviereck die
> Diagonalen senkrecht aufeinander stehen. Also ist
> [mm]\overline{AC}[/mm] die Orthogonale zu [mm]\overline{BD}.[/mm] Es gibt
> also einen Schnittpunkt S.
>  Die Geradengleichung für die Strecke AC lautet:
> [mm]x=\vektor{2\\ 1} +s*\vektor{9 \\ 2}.[/mm] Die Geradengleichung
> für die Strecke BD lautet: [mm]x=\vektor{10\\ -1} +s*\vektor{-2 \\ 9}.[/mm]
> Durch die 2 Geradengleichungen wollte ich durch ein
> Lineares Gleichungssystem den Schnittpunkt S berechnen, da
> [mm]\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{AB}+[/mm]
> 2*  [mm]\overrightarrow{BS}[/mm]
>  Doch leider bekomme ich einen Punkt S heraus, der laut
> meiner Skizze nicht funktionieren kann.
>  
> Was habe ich falsch gemacht?


Hallo Schennii,

ich denke nicht, dass du etwas (grundsätzlich) falsch
machst. Es geht wirklich "nur" darum, den Punkt B an
der Geraden AC zu spiegeln (falls wir voraussetzen,
dass die Ecken des Vierecks ABCD in der Reihenfolge
A,B,C,D durchlaufen werden sollen und dass mit
"Drachenviereck" ein im Übrigen beliebiges Viereck
gemeint ist, bei welchem die beiden Diagonalen
AC und BD zueinander senkrecht stehen und die
eine davon die andere halbiert).

Zeige halt deine Rechnung und mache klar, was daran
deiner Meinung nach nicht stimmen kann ...

LG ,   Al-Chw.

Bezug
                
Bezug
Ermittlg. D für Drachenviereck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Mo 04.03.2013
Autor: Schennii

hat sich alles geklärt, war nur ein Eingabefehler in den Taschenrechner :)
danke trotzdem
Punkt D lautet D(8,4/6,2/0)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]