matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungErlösfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Erlösfunktion
Erlösfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erlösfunktion: aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:07 Mi 18.04.2007
Autor: hiphopergirlnrwno2

hallo!!
kann mir mal bitte einer mit dieser aufgabe weiter helfen und zwar:

e) letzten monat erzielte die schlämmer gmbh einen verlust von 40€ bei 9 verkauften lagern. da der verkaufspreis im rahmen der preispolitik kürzlich geändert wurde, galt zu dieser zeit noch ein anderer stückpreis als heute. wie hoch war dieser???

die alte erlösfunktion ist E(x)= 55*x
         Kostenfunktion ist K(x)= 2*x³-19*x²+74*x+40
         Gewinnfunktion= G(x)= -2*x³+19*x²-19*x-40

so ich habe die aufgabe oben mal versucht und zwar:

G(x)= E(x)-K(x)
G(x)= p*x - (2*x³-19*x²+74*x+40)
-40 = p*9 - (2*9x³-19*9²+74*9+40)
-40 = p*9  - 625 /+625
585 =p*9 //9
65  = p

die erlösfunktion lautet E(x)= 65*x

ist der rechenweg so richtig???
mit der aufgabe hatte ich etwas probleme sonst kamm ich nämlich ganz gut zurecht außer bei der aufgabe bin ich mir nicht so sicher!

wäre echt lieb wenn mir einer weiter helfen könnte.

danke schonmal
liebe grüße


        
Bezug
Erlösfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Mi 18.04.2007
Autor: Analytiker

Hi Sarah,

>  hallo!!
>  kann mir mal bitte einer mit dieser aufgabe weiter helfen

na sicher doch *smile*...

>  so ich habe die aufgabe oben mal versucht und zwar:
>  
>  G(x)= E(x)-K(x)
>  G(x)= p*x - (2*x³-19*x²+74*x+40)
>  -40 = p*9 - (2*9x³-19*9²+74*9+40)
>  -40 = p*9  - 625 /+625
>  585 =p*9 //9
>  65  = p

[ok]

>  die erlösfunktion lautet E(x)= 65*x

Hier noch formal einbauen, das du von p(x)=65 multipliziert hast mit x umd auf E(x) zu kommen!

>  ist der rechenweg so richtig???

[ok]


Liebe Grüße
Analytiker
[lehrer]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]