Erfüllbarkeit v. Substrukturen < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 23:21 Mo 19.05.2014 | Autor: | Avinu |
Aufgabe | Sei [mm] \tau [/mm] eine Signatur und sei [mm] \mathfrak{B} [/mm] eine [mm] $\tau$-Struktur [/mm] über dem Universum B. Beweisen Sie, dass für jede quantorenfreie Formel [mm] \phi \in FO(\tau), [/mm] alle Substrukturen [mm] \mathfrak{A}_1 [/mm] = [mm] (A_1, \tau), \mathfrak{A}_1 [/mm] = [mm] (A_2, \tau) [/mm] von [mm] \mathfrak{B} [/mm] und alle [mm] a_1,...,a_k \in A_1 \cap A_2 [/mm] gilt: [mm] \mathfrak{A}_1 \models \phi(a_1,...,a_k) [/mm] gdw. [mm] \mathfrak{A}_2 \models \phi(a_1,...,a_k).
[/mm]
Folgern Sie, dass alle Substrukturen von [mm] \mathfrak{B} [/mm] die gleichen quantorenfreien Sätze erfüllen. |
Hallo zusammen,
es ist [mm] \beta: var(\phi) \mapsto A_1 \cap A_2, [/mm] mit [mm] $\beta (x_1) [/mm] = [mm] a_1$, [/mm] ... , [mm] $\beta (x_k) [/mm] = [mm] a_k$ [/mm] für beliebige aber feste [mm] a_1,...,a_k.
[/mm]
Sei nun [mm] (\mathfrak{A_1}, \beta) \models \phi. [/mm] Dann gilt wegen [mm] $\beta (x_i) \in A_1 \cap A_2$ [/mm] auch [mm] (\mathfrak{A_2}, \beta) \models \phi. [/mm] Für die Rückrichtung und die Negation (also [mm] \not\models) [/mm] gilt das Argument ja genau so. Das erscheint mir sehr trivial. Ist das so richtig?
Ein Satz in FO ist eine Formel ohne freie Variablen. Ein quantorenfreier Satz ist also eine FO Formel ohne Variablen, richtig? Ich habe nur Konstantensymbole, Funktionssymbole und Relationssymbole. Das ist aber dann ein Sonderfall dessen, was schon gezeigt wurde, oder nicht? Also ein quantorenfreier Satz ist eine quantorenfreie Formel ohne freie Variablen. Damit würde dann direkt folgen, dass alle Substrukturen von $ [mm] \mathfrak{B} [/mm] $ die gleichen quantorenfreien Sätze erfüllen.
Irgendwie erscheint mir das alles zu einfach und offensichtlich, sodass ich vermute, dass da irgendwo noch ein Fehler ist. Kann mir da jemand helfen?
Vielen Dank und schöne Grüße,
Avinu
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:20 Fr 23.05.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|