matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieEreignissystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Ereignissystem
Ereignissystem < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ereignissystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Sa 16.11.2013
Autor: piriyaie

Aufgabe
Das von [mm] \mathcal{H} [/mm] erzeugte Ereignissystem [mm] \sigma(\mathcal{H}) [/mm] ist definiert als:

[mm] \sigma(\mathcal{H}):= \bigcap [/mm] { [mm] \mathcal{F} \subseteq P(\Omega) [/mm] : [mm] \mathcal{F} [/mm] Ereignissystem und  [mm] \mathcal{F} \supseteq \mathcal{H} [/mm] }

heißt das von [mm] \mathcal{H} [/mm] "erzeugte Ereignissystem" oder das "kleinste Ereignissystem" das [mm] \mathcal{H} [/mm] enthält.

Hallo,

ich verstehe obige Definition leider nicht :-(

Was soll dieses [mm] \bigcap [/mm] vor dem { ... }???

Und warum ist [mm] \mathcal{F} \supseteq \mathcal{H}???? [/mm]

Ich verstehe das einfach nicht :-(

Bitte Hilfeee...

Danke schonmal.

Grüße
Ali

        
Bezug
Ereignissystem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Sa 16.11.2013
Autor: Fry

Hey Ali,

also verständlicher ist es wohl, wenn man schreibt:
[mm]\sigma(H)= \bigcap_{\mathcal F\in A}\mathcal F [/mm]   mit [mm]A=\{\mathcal F\subset \mathcal P(\Omega): \mathcal H\subset\mathcal F \:\: \textrm{und} \:\:\mathcal F\:\: \textrm{ist Ereignisssystem} \}[/mm]

A besteht nun aus allen [mm] $\sigma$-Algebren, [/mm] die H enthalten.
Jetzt ist [mm] $\sigma(H)$ [/mm] definiert als Schnitt all dieser [mm] \sigma-Algebren, [/mm] die H enthalten
und folglich muss dies die kleinste sein, die H enthält.
Als Schnitt von [mm] $\sigma$-Algebren [/mm] ist [mm] $\sigma(H)$ [/mm] auch wieder [mm] $\sigma$-Algebra. [/mm]

LG
Christian

 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]