matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikEreignisse - Poisson Prozess
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Ereignisse - Poisson Prozess
Ereignisse - Poisson Prozess < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ereignisse - Poisson Prozess: Frage
Status: (Frage) beantwortet Status 
Datum: 08:58 Fr 05.08.2005
Autor: oliverfiala

Die Anzahl der Ereignisse eines Poisson Prozesses ist zur Länge des Zeitintervalls proportional. d.h. je kürzer der Zeitraum desto weniger Ereignisse sind zu erwarten. Bei einem "sehr kurzen" Zeitraum ist die Wahrscheinlichkeit 2 oder mehr Ereignisse zu beobachten gleich 0. Diese Aussage "sehr kurzer Zeitraum" ist keine mathematisch exakte (trotzdem wird sie in der Literatur oft verwendet.Manchmal findet man dieses "sehr kurz"auch in der Form beschrieben:
P(X > 1) = o(h)  mit  [mm] \limes_{h\rightarrow\0} \bruch{o(h)}{h}=0 [/mm]
Wieso und wie kommt dieses o(h) ins Spiel?
Ich glaube irgendwo gelesen zu haben, dass das mit der Taylorentwicklung der Exponentialfunktion zu tun hat.
Kann mir das jemand bitte erklären oder mir Tipps über Literatur geben woraus und wie man dieses P (X > 1) = o(h) ableitet?

Ich bin dankbar für Hilfe und habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ereignisse - Poisson Prozess: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Fr 05.08.2005
Autor: Stefan

Hallo!

Okay, erst einmal mit Hilfe der Taylorreihe der Exponentialfunktion, wie von dir gewünscht:

Es gilt ja, wenn $X$ ein normaler Poisson-Prozess mit Intensität [mm] $\lambda$ [/mm] ist:

[mm] $P(X_h>1) [/mm] = 1 - [mm] P(X_h \le [/mm] 1)$

$= 1 - [mm] e^{-\lambda h} \cdot (1+\lambda [/mm] h)$

$= [mm] e^{-\lambda h} \cdot (e^{\lambda h} [/mm] - 1 - [mm] \lambda [/mm] h)$

[mm] $=e^{-\lambda h} \cdot \left( \sum\limits_{i=0}^{\infty} \frac{\lambda^ih^i}{i!} - 1 - \lambda h \right)$ [/mm]

[mm] $=e^{-\lambda h} \cdot \left( \sum\limits_{i=2}^{\infty} \frac{\lambda^i h^i}{i!} \right)$, [/mm]

und daher:

[mm] $\lim\limits_{h \downarrow 0} \frac{P(X_h>1)}{h} [/mm] = [mm] \lim\limits_{h \downarrow 0}\left[ \frac{e^{-\lambda h} \cdot \left( \sum\limits_{i=2}^{\infty} \frac{\lambda^i h^i}{i!} \right)}{h} \right] [/mm] = [mm] \lim\limits_{h \downarrow 0} \left[ e^{-\lambda h} \lambda \sum\limits_{i=1}^{\infty} \frac{\lambda^i h^i}{i!} \right] [/mm] = 0$.

Alternativ (und natürlich einfacher) kann man sich natürlich auch mit der Regel von de l'Hospital überlegen, dass

[mm] $\lim\limits_{h \downarrow 0} \frac{1-e^{-\lambda h} - \lambda h e^{-\lambda h}}{h}=0$ [/mm]

gilt.

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]