matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikEreignislogik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Ereignislogik
Ereignislogik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ereignislogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 So 29.03.2009
Autor: axi0m

Aufgabe
Seien [mm] (\Omega,P) [/mm] ein diskretes Zufallexperiment und A,B,C Ereignisse derart, dass 0 < P(B [mm] \cap [/mm] C)<1. Zeigen oder wiederlegen Sie:
a) P(A [mm] \cap [/mm] B|C)=P(A|C)P(B|C) [mm] \Leftrightarrow [/mm] P(A|C)=P(A|B [mm] \cap [/mm] C)
b) P(A|C)=P(A|B [mm] \cap [/mm] C) [mm] \Rightarrow [/mm] A,B sind stochastisch unabhängig
c) A,B sind stochastisch unabhängig [mm] \Rightarrow [/mm] P(A|C)=P(A|B [mm] \cap [/mm] C)

Tag zusammen.
Ich lerne für eine Klausur und würde mich über feedback zu meinen Übungsbemühungen freuen.

Meine Ansätze/Lösungen:
a)
P(A [mm] \cap [/mm] B|C) &= P(A|C) P(B|C)
[mm] \Leftrightarrow \frac{P(A \cap B \cap C)}{P(C)} [/mm] = P(A|C) [mm] \frac{P(B \cap C)}{P(C)} [/mm]
[mm] \Leftrightarrow \frac{P(A \cap B \cap C)}{P(B \cap C)} [/mm] = P(A|C)
[mm] \Leftrightarrow [/mm] P(A|B [mm] \cap [/mm] C) = P(A|C)  [mm] \square [/mm]
b)
Wir widerlegen durch Angabe eines Gegenbeispiels. Als Zufallsexperiment wählen wir das einmalige Werfen eines fairen Würfels. Es sei also [mm] \Omega [/mm] = [mm] \{1, \cdots, 6\} [/mm] laplace-verteilt. Wir betrachten nun die Ereignisse:
A = [mm] \{2,4,6\}, [/mm] B = [mm] \{1,3,5\}, [/mm]  C = [mm] \{3\} [/mm]
Damit gilt P(A|C) = 0 = P(A|B [mm] \cap [/mm] C)
Wegen P(A [mm] \cap [/mm] B) = 0 [mm] \neq [/mm] P(A)P(B) = [mm] \frac{1}{4} [/mm] sind A und B aber stochastisch abhängig und die Folgerung gilt nicht.
c)
Wir wiederlegen wieder durch Angabe eines Gegenbeispiels. Wir definieren folgende Ereignisse:
A = [mm] \{2,4,6\}, [/mm]  B = [mm] \{3,6\}, [/mm] C = [mm] \{1,3,4,5\} [/mm]
A und B sind hierbei stochastisch unabhängig, da [mm] P(A|B)=\frac{P(A\cap B)}{P(B)}=\frac{1}{2}=P(A), [/mm] aber [mm] P(A|C)=\frac{P(A\cap C)}{P(C)}=\frac{1}{4}\neq [/mm] 0 = P(A | B [mm] \cap [/mm] C)

Sieht das gut aus?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ereignislogik: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Mo 30.03.2009
Autor: vivo

Hallo,

sehe zumindest nichts was nicht passen würde.

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]