matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikEreignisfeld
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Ereignisfeld
Ereignisfeld < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ereignisfeld: nur Teilaufgabe c) gamma fehlt
Status: (Frage) beantwortet Status 
Datum: 16:01 Fr 05.05.2006
Autor: Maiko

Aufgabe
a) Aus wievielen Ereignissen besteht das kleinste Ereignisfeld, das die atomaren Ereignisse A,B und C entält?
b) Welche Ereignisse sind dies?
c) Lassen sich die Wahrscheinlichkeiten aller unter b) ermittelten Ereignisse bestimmen, falls
[mm] \beta: [/mm] P(A)=P1; [mm] P(\overline{A})=1-P1 [/mm]
[mm] \gamma: [/mm] P(A [mm] \cup [/mm] B)=P1; P(A)=Q

Hier meine Lösungen außer c) gamma, die allesamt korrekt sind:

a) [mm] 2^3 [/mm] = 8

b) [mm] \omega={leere Menge, A, B, C, A \cup B, B \cup C, A \cup B \cup C} [/mm]

c)
[mm] \beta: [/mm]
Aus den gegebenen Werten lassen sich nicht die Wahrscheinlichkeiten aller anderen 8 Ereignisse bestimmen. Die angegebenen Wahrscheinlichkeiten sind unvollständig.

[mm] \gamma: [/mm]
Hier bin ich mir nicht ganz sicher. Ich tendiere aber dazu, dass dies möglich ist, da ich mit
P(A [mm] \cup [/mm] B)-P(A)=P(B)
raus und mit
1-P(A [mm] \cup [/mm] B)=P(C)
bekomme.

Sehe ich das richtig oder habe ich irgendwo einen Denkfehler?

        
Bezug
Ereignisfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Fr 05.05.2006
Autor: felixf

Hallo Maiko!

> a) Aus wievielen Ereignissen besteht das kleinste
> Ereignisfeld, das die atomaren Ereignisse A,B und C
> entält?

``Ereignisfeld'' ist wohl der bisher komischte Name, den ich fuer [mm] $\sigma$-Algebra [/mm] gehoert habe...

>  b) Welche Ereignisse sind dies?
>  c) Lassen sich die Wahrscheinlichkeiten aller unter b)
> ermittelten Ereignisse bestimmen, falls
> [mm]\beta:[/mm] P(A)=P1; [mm]P(\overline{A})=1-P1[/mm]
>  [mm]\gamma:[/mm] P(A [mm]\cup[/mm] B)=P1; P(A)=Q
>  Hier meine Lösungen außer c) gamma, die allesamt korrekt
> sind:
>  
> a) [mm]2^3[/mm] = 8
>  
> b) [mm]\omega=\{ \emptyset, A, B, C, A \cup B, B \cup C, A \cup B \cup C\}[/mm]

Das stimmt so nur, wenn $A [mm] \cup [/mm] B [mm] \cup [/mm] C = [mm] \Omega$ [/mm] ist, also der ganze Wahrscheinlichkeitsraum! Ansonsten hast du 16 Elemente!

> c)
>  [mm]\beta:[/mm]
> Aus den gegebenen Werten lassen sich nicht die
> Wahrscheinlichkeiten aller anderen 8 Ereignisse bestimmen.
> Die angegebenen Wahrscheinlichkeiten sind unvollständig.

Das stimmt.

> [mm]\gamma:[/mm]
>  Hier bin ich mir nicht ganz sicher. Ich tendiere aber
> dazu, dass dies möglich ist, da ich mit
> P(A [mm]\cup[/mm] B)-P(A)=P(B)

Also wenn $A [mm] \neq [/mm] B$ ist, dann gilt das, da $A$ und $B$ Atome sind (und somit $A [mm] \cap [/mm] B = [mm] \emptyset$). [/mm]

> raus und mit
> 1-P(A [mm]\cup[/mm] B)=P(C)
>  bekomme.

Nein, das stimmt nicht: Es wurde ja nie gesagt, dass $A [mm] \cup [/mm] B [mm] \cup [/mm] C$ der ganze Wahrscheinlichkeitsraum ist! Deine Aussage gilt nur, wenn $P(A [mm] \cup [/mm] B [mm] \cup [/mm] C) = 1$ ist!

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]