matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenEpsilon bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Epsilon bestimmen
Epsilon bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon bestimmen: Ansatz
Status: (Frage) beantwortet Status 
Datum: 15:14 Sa 02.12.2006
Autor: Planlos

Aufgabe
Zu jeder der unten angegebenen Folgen [mm] (a_{n}) [/mm] finde man zu jedem [mm] \varepsilon [/mm]  ein [mm] N(\varepsilon) [/mm] , so dass für alle n [mm] \ge N(\varepsilon) [/mm] die Ungleichung [mm] |a_{n}| [/mm] < [mm] \varepsilon [/mm] besteht.

[mm] a_{n}=\bruch{n}{n^3+n^2+2} [/mm]   bzw. [mm] a_{n}=(-1)^n\bruch{n}{n^2+1} [/mm]


Könnte mir vielleict jemand erklären, wie sich dieses [mm] N(\varepsilon) [/mm] finden lässt, weil ich überhaupt nicht weiss, wie ich das rechnerisch finden kann und wie ich das dann aufschreiben soll.  Bei der ersten Folge könnte mein [mm] N(\varepsilon) [/mm] ja 1 sein, denn ab [mm] a_{1} [/mm] sind ja alle Folgenglieder < 1. Aber wie schreibt man das auf??

Bei 2. ist das Problem ungefähr dasselbe. Der Bruch wird ja auch nie >1 und konvergiert gegen null. Jetzt könnte man zwei Teilfolgen bilden und die konvergieren beide gegen null. Ab den ersten beiden Folgegliedern wird jedes Folgeglied < 1. Aber wie kann man da das epsilon bestimmen?  

        
Bezug
Epsilon bestimmen: Querverweis
Status: (Antwort) fertig Status 
Datum: 15:19 Sa 02.12.2006
Autor: Loddar

Hallo Planlos!


Sieh' mal hier, da wurde dieselbe Aufgabe bereits vor kurzem erläutert und gelöst.

Der Weg ist hier, dass man zunächst abschätzt, bevor man nach [mm] $N(\varepsilon)$ [/mm] umstellt.


Gruß
Loddar


Bezug
                
Bezug
Epsilon bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 Sa 02.12.2006
Autor: Planlos

Danke Loddar, die erste war ja schnell zu machen und an der zweiten sitz ich noch n bisschen, aber das wird schon.
Cu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]