matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenEpsilon-Delta Beweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Epsilon-Delta Beweis
Epsilon-Delta Beweis < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon-Delta Beweis: Grenzwert gegen unendlich
Status: (Frage) beantwortet Status 
Datum: 15:14 Mi 05.10.2011
Autor: ringelnatter

Aufgabe
[mm] \lim_{x \to a}f(x) [/mm] = 0 [mm] \Rightarrow[/mm]  [mm] \lim_{x \to a}\left( \bruch{1}{\left| f(x) \right|} \right) = \infty [/mm]
Beweise mit Hilfe des Epsilon-Delta Kriteriums

Hallo,
wir nehmen an der Uni gerade die Epsilon-Delta Beweise für Grenzwerte durch und ich habe mit Mühe die Beweise für z.B. [mm] \lim_{x \to 2}x^2 = 4 [/mm] verstanden, habe aber leider nicht die leiseste Idee, wie ich die obige Aufgabe lösen kann. In der Schule haben wir immer gesagt, dass [mm] \bruch{1}{0} = \infty [/mm] ist und damit hatte sich das Problem erledigt. Wie kann ich diese Aufgabe beweisen?
Danke!
ringelnatter

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Epsilon-Delta Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mi 05.10.2011
Autor: fred97

1. Zeigen sollst Du:

Zu jedem c>0 ex. ein [mm] \delta>0 [/mm] mit:

     (*)       $|x-a|< [mm] \delta$ \Rightarrow \bruch{1}{|f(x)|}>c. [/mm]

2. Vorausgesetzt ist:

Zu jedem [mm] \varepsilon>0 [/mm] ex. ein [mm] \delta>0 [/mm] mit:

            $|x-a|< [mm] \delta$ \Rightarrow [/mm]  $ |f(x)|< [mm] \varepsilon.$ [/mm]

So, nun gib mal ein c>0 vor. Wähle [mm] \varepsilon>0 [/mm] in Abhängigkeit von c geschickt, so dass Du aus 2. ein [mm] \delta [/mm] bekommst mit dem dann (*) gilt.

FRED

Bezug
                
Bezug
Epsilon-Delta Beweis: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:30 Mi 05.10.2011
Autor: ringelnatter

Danke Fred für deine schnelle Antwort! Ich habe jetzt folgendes:
Aus [mm] \lim_{x \to a}f(x) = 0 [/mm] folgt:
Für alle [mm] \epsilon [/mm] > 0 und für [mm] \epsilon = \left( \bruch{1}{c} \right) [/mm] exsistiert ein [mm] \delta [/mm] > 0 mit [mm] \left| x-a \right| < \delta \Rightarrow \left| f(x)-0 \right|< \epsilon [/mm]
[mm] \Rightarrow \left| f(x)-0 \right|< \left( \bruch{1}{c} \right) [/mm]
[mm] \Rightarrow \left| f(x) \right|< \left( \bruch{1}{c} \right) [/mm]
[mm] \Rightarrow \left( \bruch{1}{\left| f(x) \right|} \right) > c [/mm]

Jetzt fehlt mir irgendwie das delta, bzw. ist das überhaupt richtig, was ich bis jetzt gemacht habe?
Danke!
ringelnatter

Bezug
                        
Bezug
Epsilon-Delta Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Mi 05.10.2011
Autor: leduart

Hallo
du bist auf dem richtigen Weg, solltest aber mit Der Behauptung anfangen:
$ [mm] \lim_{x \to a}\left( \bruch{1}{\left| f(x) \right|} \right) [/mm] = [mm] \infty [/mm] $
bedeutetet zu jedem c>0  gibt es [mm] |x|<\delta [/mm]  so dass bruch{1}{| f(x) |} >c
die Vors.  sagt zu jedem [mm] \epsilon=1/c [/mm]  gibt es  [mm] |x|<\delta [/mm]  so dass |f(x)|<1/c daraus folgt, für [mm] x<\delta [/mm] 1/|f(x)|>c
schon fertig.
du musst nur in der richtigen Reihenfolge vorgehen
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]