matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Epsilon-Delta-Kriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Epsilon-Delta-Kriterium
Epsilon-Delta-Kriterium < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon-Delta-Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Fr 14.12.2007
Autor: Tea

Aufgabe
Berechnen Sie [mm] \limes_{x\rightarrow 1}\bruch{2x^4 -6x^3 +x^2 +3}{x-1} [/mm]

Hallo Ihr!

Ich habe es mit l'Hospital und mit Polynomdivision versucht.
Bei der Polynomdivision erhalte ich

[mm] (2x^4-6x^3+x^2+3):(x-1)=2x^3-4x^2-3x-3, [/mm]

also in beiden Fällen, dass ich die Funktion mit "-8" stetig ergänzen kann.

Nun soll die Aufgabe aber leider mit dem [mm] \varepsilon-\delta-Kriterium [/mm] gelöst werden. Dieses habe ich noch nie benutzt ;-(.

[mm] 0<|x-x_0|<\delta:|y_0 [/mm] - [mm] f(x)|<\varepsilon [/mm]

        
Bezug
Epsilon-Delta-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Fr 14.12.2007
Autor: leduart

Hallo
Da du für alle [mm] x\ne1 [/mm] die Polynomdivision machen kannst, musst d nur in |f(x)+8|
[mm] |x-1|<\delta [/mm]  oder für x>1 [mm] x<1+\delta. [/mm] für x<1   [mm] x<1-\delta [/mm] einsetzen, dann bekommst du eine Bedingung für [mm] \delta(\varepsilon) [/mm]
Gruss leduart

Bezug
                
Bezug
Epsilon-Delta-Kriterium: Rückfrage+ Lösung
Status: (Frage) überfällig Status 
Datum: 13:55 Fr 14.12.2007
Autor: Tea

Hi Leduart!

Danke für die schnelle Antwort :)
Ich habe also jetzt auf der einen Seite
[mm] x<\delta+1 [/mm]
auf der anderen
[mm] x<1-\delta [/mm]
stehen.

Kannst du mir sagen wie ich das mit der rechten Seite [mm] |-8-f(x)|<\varepsilon [/mm] verknüpfe?
Ich hab sowas halt noch nie gerechnet. Auch weiß ich nicht wirklich was das Kriterium aussagt.



Als Lösung wurde - wie ich soeben erfahren habe -

Es ist [mm] \limes_{x\rightarrow 1}\bruch{2x^4 -6x^3 +x^2 +3}{x-1} [/mm] = -8,denn für [mm] \varepsilon>0 [/mm] und [mm] |x-1|\le\delta(\varepsilon):=\min\left\{1,\bruch{\varepsilon}{17}\right\} [/mm] ist [mm] |\bruch{2x^4-6x^3+x^2+3}{x-1} +8|<\varepsilon [/mm]

angegeben.

Bezug
                        
Bezug
Epsilon-Delta-Kriterium: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 So 16.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]