matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitEpsilon-Delta-Kriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Epsilon-Delta-Kriterium
Epsilon-Delta-Kriterium < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon-Delta-Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Do 17.05.2007
Autor: barsch

Aufgabe
Zeige, dass [mm] f:[0,1]\to\IR^2 [/mm] mit f(0):=(0,0) und [mm] f(t):=(t,t*sin(\bruch{\pi}{t})) [/mm] sonst, stetig ist

Hi,

also ich würde das [mm] \varepsilon-\delta-Kriterium [/mm] verwenden.

Ich habe so angefangen:

[mm] \vmat{ t-0 }<\delta [/mm]

[mm] \vmat{ (t,t*sin(\bruch{\pi}{t}))}<\varepsilon [/mm]

Bin mir aber da schon unsicher! Wie muss ich den Beweis im 2-Dimensionalen führen? Wie muss ich am Schluss [mm] \delta [/mm] definieren?

MfG

barsch

Ich habe die Frage in keinem anderen Forum gestellt.

        
Bezug
Epsilon-Delta-Kriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Do 17.05.2007
Autor: leduart

Hallo
> Zeige, dass [mm]f:[0,1]\to\IR^2[/mm] mit f(0):=(0,0) und
> [mm]f(t):=(t,sin(\bruch{\pi}{2}))[/mm] sonst, stetig ist
>  Hi,

meinst du das wirklich [mm] sin(\pi/2) [/mm] =1 d.h. für t=0 f(0,0)=(0,1)
Gruss leduart

> also ich würde das [mm]\varepsilon-\delta-Kriterium[/mm] verwenden.
>
> Ich habe so angefangen:
>  
> [mm]\vmat{ t-0 }<\delta[/mm]
>  
> [mm]\vmat{ (t,sin(\bruch{\pi}{2}))}<\varepsilon[/mm]
>  
> Bin mir aber da schon unsicher! Wie muss ich den Beweis im
> 2-Dimensionalen führen? Wie muss ich am Schluss [mm]\delta[/mm]
> definieren?
>  
> MfG
>  
> barsch
>  
> Ich habe die Frage in keinem anderen Forum gestellt.


Bezug
                
Bezug
Epsilon-Delta-Kriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:49 Do 17.05.2007
Autor: barsch

Oh sorry,

habe mich da geirrt. Habe es geändert.

Danke

barsch

Bezug
        
Bezug
Epsilon-Delta-Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Fr 18.05.2007
Autor: leduart

Hallo barsch
Schreib doch |f(t)| erstmal hin! dann benutze dass [mm] sin^2(irgendwas)\le [/mm] 1 und schätze den Betrag damit ab. dann findest du auch das nötige [mm] \delta. [/mm] (das wird bestimmt , oder "gefunden" nicht "definiert"
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]