matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationEntwicklung um Nullvektor
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Entwicklung um Nullvektor
Entwicklung um Nullvektor < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Entwicklung um Nullvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Fr 20.11.2009
Autor: piccolo1986

Hey, ich hätte mal eine Frage zur Taylorentwicklung von [mm] \frac{1}{|\vec{a}-\vec{a'}|} [/mm] für kleine [mm] \vec{a} [/mm] um den Nullvektor, dabei sei [mm] \vec{a} [/mm] aus dem [mm] \IR^{3}. [/mm]
Kann mir jemand mal kurz mit dem Ableiten unter die Arme greifen???

mfg piccolo

        
Bezug
Entwicklung um Nullvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Fr 20.11.2009
Autor: Al-Chwarizmi


> Hey, ich hätte mal eine Frage zur Taylorentwicklung von
> [mm]\frac{1}{|\vec{a}-\vec{a'}|}[/mm] für kleine [mm]\vec{a}[/mm] um den
> Nullvektor, dabei sei [mm]\vec{a}[/mm] aus dem [mm]\IR^{3}.[/mm]
> Kann mir jemand mal kurz mit dem Ableiten unter die Arme
> greifen???
>  
> mfg piccolo


Ich nehme einmal an, dass  [mm] \vec{a'} [/mm] hier für einen
vorgegebenen konstanten Vektor stehen soll.
Dann würde ich ihn jedenfalls anders bezeichnen,
um insbesondere Verwechslungen mit Ableitungen
zu vermeiden !

LG


Bezug
        
Bezug
Entwicklung um Nullvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 Fr 20.11.2009
Autor: XPatrickX

Hallo,


> Kann mir jemand mal kurz mit dem Ableiten unter die Arme
> greifen???

Ich schreibe [mm] \vec{a}'=\vec{r}. [/mm] Um die Ableitungen zu bestimmen schreibe den Term aus:

[mm] \frac{1}{|\vec{a}-\vec{r}|}=\frac{1}{\sqrt{ (a_1-r_1)^2+(a_2-r_2)^2+(a_3-r_3)^2}} [/mm]

Jetzt kannst du nach [mm] a_i [/mm] differenzieren.

Gruß Patrick

Bezug
                
Bezug
Entwicklung um Nullvektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:55 Fr 20.11.2009
Autor: Al-Chwarizmi


> Hallo,
>  
>
> > Kann mir jemand mal kurz mit dem Ableiten unter die Arme
> > greifen???
>  
> Ich schreibe [mm]\vec{a}'=\vec{r}.[/mm] Um die Ableitungen zu
> bestimmen schreibe den Term aus:
>  
> [mm]\frac{1}{|\vec{a}-\vec{r}|}=\frac{1}{\sqrt{ (a_1-r_1)^2+(a_2-r_2)^2+(a_3-r_3)^2}}[/mm]
>  
> Jetzt kannst du nach [mm]a_i[/mm] differenzieren.


Na, das wolltest doch eigentlich du ...

Was ist das Problem dabei ?

Was dabei nützlich sein kann:   [mm] \frac{1}{\sqrt{T}}=T^{-1/2} [/mm]

und dann: Potenzregel, Kettenregel ...


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]