matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenEntwicklung Taylorreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Entwicklung Taylorreihe
Entwicklung Taylorreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Entwicklung Taylorreihe: Bestimmung allgemeine Ableit.
Status: (Frage) beantwortet Status 
Datum: 18:45 Fr 01.08.2008
Autor: cmg

Aufgabe
Entwickeln Sie f(x) = 1 / sqrt(1+x) an der Stelle [mm] x_0 [/mm] = 0 in eine Potenzreihe

Hi,
ich weiss nicht wie ich die n-te Ableitung bestimme.

f'(x) = -1/2 * (1+x)^(-3/2)
f''(x) = -1/2 * -3/2 * (1+x)^(-5/2)
usw
und dann bei der n-ten:
[mm] f^n(x) [/mm] = [mm] (-1)^n [/mm] * ?/2 * (1+x)^((-2*n+1)/2)

wie bestimme ich dieses ?
es ist ja quasi 1*3*5*7*... wie drückt man sowas denn geschickt aus?
Ich hatte probiert oben n! hinzuschreiben und im Nenner die "halbe"-Fakultät wieder rauszukürzen, allerdings könnte ich dann ja gleich oben die "halbe"-Fakultät hinschreiben. Habe ich das unglücklich aufgeschrieben und umgeformt, so dass es einen leichteren Weg gibt oder gibts sowas wie "halbe"-Fakultät (ungerade/gerade)?

Vielen Dank im Voraus :)

        
Bezug
Entwicklung Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Fr 01.08.2008
Autor: Somebody


> Entwickeln Sie f(x) = 1 / sqrt(1+x) an der Stelle [mm]x_0[/mm] = 0
> in eine Potenzreihe
>  Hi,
>  ich weiss nicht wie ich die n-te Ableitung bestimme.
>  
> f'(x) = -1/2 * (1+x)^(-3/2)
>  f''(x) = -1/2 * -3/2 * (1+x)^(-5/2)
>  usw
>  und dann bei der n-ten:
>  [mm]f^n(x)[/mm] = [mm](-1)^n[/mm] * ?/2 * (1+x)^((-2*n+1)/2)
> wie bestimme ich dieses ?

Es wäre für Dich einfacher gewesen, den allgemeinen Fall hinzuschreiben, wenn Du nicht voreilige Umformungen der Faktoren, wie [mm] $-\frac{1}{2}-1=-\frac{3}{2}$, [/mm] vorgenommen hättest. Mit solchen Umformungen erschwert man sich nicht gerade selten das Erkennen der dahinterliegenden Regelmässigkeit:

[mm]f^{(n)}(x)=\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}-1\right)\cdot\left(-\frac{1}{2}-2\right)\cdots\left(-\frac{1}{2}-(n-1)\right)\cdot (1+x)^{-\frac{1}{2}-n}[/mm]

Beim nächsten Ableiten fällt ja jeweils dieser Exponent [mm] $-\frac{1}{2}-n$ [/mm] von $1+x$ als Faktor "nach vorne".

>  es ist ja quasi 1*3*5*7*... wie drückt man sowas denn
> geschickt aus?

Vielleicht so(?)
[mm]1\cdot 3\cdot 5\cdot 7\cdots (2n+1)=\frac{(2n+1)!}{2^n\cdot n!}[/mm]


>  Ich hatte probiert oben n! hinzuschreiben und im Nenner
> die "halbe"-Fakultät wieder rauszukürzen, allerdings könnte
> ich dann ja gleich oben die "halbe"-Fakultät hinschreiben.
> Habe ich das unglücklich aufgeschrieben und umgeformt, so
> dass es einen leichteren Weg gibt oder gibts sowas wie
> "halbe"-Fakultät (ungerade/gerade)?

Der "einfachere Weg" ist einfach die Kenntnis einer geeignet verallgemeinerten Form des "binomischen Lehrsatzes". Dann gilt nämlich:

[mm]\frac{1}{\sqrt{1+x}}=\left(1+x\right)^{-1/2}=\sum\limits_{n=0}^\infty \binom{-1/2}{n} x^n[/mm]

Wobei eben gerade
[mm]\binom{-1/2}{n} = \frac{\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}-1\right)\cdot\left(-\frac{1}{2}-2\right)\cdots\left(-\frac{1}{2}-(n-1)\right)}{1\cdot 2\cdots n}[/mm]

Gut, dies ist nur mal eine Abkürzung für einen Term, den Du dann letztlich vielleicht doch auf etwas andere Weise konkret ausrechnen magst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]