matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenEntwicklung Potenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Entwicklung Potenzreihe
Entwicklung Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Entwicklung Potenzreihe: komplexe Potenzreihe Umformung
Status: (Frage) beantwortet Status 
Datum: 14:28 So 21.02.2010
Autor: Loewenzahn

Aufgabe
Die Funktion [mm] \bruch{1}{z+2} [/mm] , z ist ungleich -2, ist in eine Potenzreihe um [mm] z_{0} [/mm] zu entwickeln. Bestimmen Sie den Konvergenzradius dieser Reihe.

[mm] Lösung:\summe_{n=1}^{\infty}\bruch{(-1)^n}{7^{(n+1)}} (z-5)^n [/mm]
r= 7


Hallo!

Ich brauch Hilfe, weil ich nicht weiß, wie man auf die Lösung kommt...Ich bin nur ein Stück weit gekommen:

[mm] \bruch{1}{2+(z-z_{0})+z_{0}}=\bruch{1}{2+(z-5)+5}=\bruch{1}{7+(z-5)} [/mm] =?

Mein Problem ist, dass ich diesen Ausdruck nicht umformen kann, damit ich einen "Koeffizientenvergleich mit der  dem linken Teil der Regel  [mm] \bruch{1}{1-(z-z_{0})}=\summe_{n=1}^{n}c_{n}(z-z_{n}) [/mm] machen kann.

Mich stört das "+" und mich stört die "7"...Und als ich die Lösung angeguckt habe, da dacht ich mir: Es gibt bestimmt ne Äquivalenzumformung dafür, aber in meinem Merziger finde ich dazu nix....Wer weiß Rat?

        
Bezug
Entwicklung Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 So 21.02.2010
Autor: fencheltee


> Die Funktion [mm]\bruch{1}{z+2}[/mm] , z ist ungleich -2, ist in
> eine Potenzreihe um [mm]z_{0}[/mm] zu entwickeln. Bestimmen Sie den
> Konvergenzradius dieser Reihe.
>  
> [mm]Lösung:\summe_{n=1}^{\infty}\bruch{(-1)^n}{7^{(n+1)}} (z-5)^n[/mm]
>  
> r= 7
>  
>
> Hallo!
>  
> Ich brauch Hilfe, weil ich nicht weiß, wie man auf die
> Lösung kommt...Ich bin nur ein Stück weit gekommen:
>  
> [mm]\bruch{1}{2+(z-z_{0})+z_{0}}=\bruch{1}{2+(z-5)+5}=\bruch{1}{7+(z-5)}[/mm]
> =?

klammer im nenner noch die 7 aus und denke an die geometrische reihe mit
[mm] \sum_{k=0}^{\infty} a_0 q^k [/mm] = [mm] \frac{a_0}{1-q}, [/mm]

>  
> Mein Problem ist, dass ich diesen Ausdruck nicht umformen
> kann, damit ich einen "Koeffizientenvergleich mit der  dem
> linken Teil der Regel  
> [mm]\bruch{1}{1-(z-z_{0})}=\summe_{n=1}^{n}c_{n}(z-z_{n})[/mm]
> machen kann.
>  
> Mich stört das "+" und mich stört die "7"...Und als ich
> die Lösung angeguckt habe, da dacht ich mir: Es gibt
> bestimmt ne Äquivalenzumformung dafür, aber in meinem
> Merziger finde ich dazu nix....Wer weiß Rat?

gruß tee

Bezug
                
Bezug
Entwicklung Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 So 21.02.2010
Autor: Loewenzahn

Ahhh... okay,

also ich habe das gemacht, aber dann hat es nicht hingehauen, weil ich zwar 1/7 ausgeklammert hatte, aber das iwie nicht mehr als Faktor beachtet habe...dann noch das "-" vergessen, und schon sah meine Lsg. kommplett anders aus...daher hatte ich's verworfen....
Okay, es ergibt ich also
[mm] \bruch{1}{7}*\bruch{1}{1+\bruch{1}{7}*(z-5)}=\bruch{1}{7}*\bruch{1}{1-(-\bruch{1}{7}*(z-5))}=\bruch{1}{7}*\bruch{1}{1-(-\bruch{1}{7}*(z-5))} [/mm]
MIt [mm] (-\bruch{1}{7}*(z-5))="q" [/mm]
ergibt sich
[mm] \bruch{1}{7}\summe_{n=\infty}(-\bruch{1}{7}*(z-5))^{n}= \bruch{1}{7}\summe_{n=\infty}(-\bruch{1}{7})^{n}*(z-5)^{n} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]