matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale SprachenEntscheidbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Formale Sprachen" - Entscheidbarkeit
Entscheidbarkeit < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Entscheidbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Fr 31.10.2008
Autor: Christopf

Zeigen Sie: Sind [mm] M_{1};M_{2}\subseteq X^{\*} [/mm] entscheidbare Mengen, so auch [mm] M_{1}\backslash M_{2}; [/mm]

Meine Frage
Was versteht man unter Entscheidbarkeit.
Ich hatte in der Vorlesung Entscheidbarkeit so versanden:

Gibt es ein Algorithmus der das überprüfen kann, dann ist es entscheidbar.
Der Lehrer hatte mir gesagtr das ist es falsch verstanden habe.

Mein Problem, wenn der Begriff richtig geklärt ist. Wie kann mann die gegebene Aussage richtig beweisen.
Kann mir das jemand an mein Beispiel erklären, wie dieser Begriff richtig zu verstehen ist und wie man das beweist


        
Bezug
Entscheidbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Di 04.11.2008
Autor: Christopf

Kann mir bitte jemand erklären wie ich das Problem lösen muss

Danke im Vorraus

Bezug
        
Bezug
Entscheidbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Do 06.11.2008
Autor: bazzzty


> Zeigen Sie: Sind [mm]M_{1};M_{2}\subseteq X^{\*}[/mm] entscheidbare
> Mengen, so auch [mm]M_{1}\backslash M_{2};[/mm]
>  
> Meine Frage
> Was versteht man unter Entscheidbarkeit.
> Ich hatte in der Vorlesung Entscheidbarkeit so versanden:
>  
> Gibt es ein Algorithmus der das überprüfen kann, dann ist
> es entscheidbar.

Das stimmt schon so. Wer es etwas formaler mag: Eine Menge [mm]M[/mm] ist eintscheidbar, wenn die charakteristische Funktion [mm]\chi_M[/mm], die für jedes Element 0 (nicht enthalten) oder 1 (enthalten) zurückliefert, berechenbar ist. Aber wie gesagt: Das ist eine formalere Definition. Dein Verständnis stimmt schon: gibt es einen Algorithmus, der das Enthaltensein entscheiden kann, ist die Menge entscheidbar. WICHTIG: Dieser Algorithmus muß immer terminieren, sowohl bei Elementen aus [mm]M[/mm] als auch bei anderen! Man muß also den Algorithmus anschmeißen können und nach endlicher Zeit eine Antwort JA/NEIN erhalten.

> Der Lehrer hatte mir gesagtr das ist es falsch verstanden
> habe.

Dem kann ich nicht folgen. Du warst höchstens etwas ungenau.

> Mein Problem, wenn der Begriff richtig geklärt ist. Wie
> kann mann die gegebene Aussage richtig beweisen.
>  Kann mir das jemand an mein Beispiel erklären, wie dieser
> Begriff richtig zu verstehen ist und wie man das beweist

In Deiner Erklärung: Wenn [mm]M_1[/mm] und [mm]M_2[/mm] entscheidbar sind, dann gibt es Algorithmen [mm]A_{M_1}[/mm] und [mm]A_{M_2}[/mm], die die beiden Mengen entscheiden. Folgender Algorithmus entscheidet dann [mm]M_1\setminus M_2[/mm]:

Wenn [mm]A_{M_1}(x)=\textrm{NEIN}[/mm] oder [mm]A_{M_2}(x)=\textrm{JA}[/mm] gib NEIN zurück
Sonst gib JA zurück.

Das geht natürlich auch mit charakteristischen Funktionen:
Wenn [mm]\chi_{M_1}[/mm] und [mm]\chi_{M_2}[/mm] berechenbar sind,
dann auch [mm]\chi_{M_1\setminus M_2}:= \chi_{M_1}\cdot(1-\chi_{M_2})[/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]