matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieEndungen der Teiler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Endungen der Teiler
Endungen der Teiler < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endungen der Teiler: Ansatz?
Status: (Frage) beantwortet Status 
Datum: 14:58 So 06.01.2008
Autor: Ole-Wahn

Aufgabe
Man beweise: Bei jeder positiven ganzen Zahl ist die Anzahl der Teiler, deren Dezimaldarstellung auf 1 oder 9 endet, nicht kleiner als die Anzahl der Teiler, deren Dezimaldarstellung auf 3 oder 7 endet.

Hallo,

ich weiß nicht, wie ich an so eine Aufgabe herangehe! Induktion ? Wird wohl schwierig. Ein Widerspruchsbeweis bietet sich durch die Art der Aufgabenstellung an, aber mit welchen Argumenten?

Das einzige, was die MEngen charakterisiert, ist doch der Rest mod 10.

Also ist doch z.z.: [mm] $\left| \lbrace d | n , ~d \equiv 1 \vee d \equiv 9 ~(mod~10) \rbrace \rlight|~\geq ~\left|\lbrace d' |n , ~d' \equiv 3 \vee d'\equiv 7~(mod~10)\rbrace\right|$ Aber wie gehe ich daran, die Mengen sind doch disjunkt, oder? [/mm]

        
Bezug
Endungen der Teiler: (m)ein Weg
Status: (Antwort) fertig Status 
Datum: 12:27 Di 08.01.2008
Autor: statler

Hi!

> Man beweise: Bei jeder positiven ganzen Zahl ist die Anzahl
> der Teiler, deren Dezimaldarstellung auf 1 oder 9 endet,
> nicht kleiner als die Anzahl der Teiler, deren
> Dezimaldarstellung auf 3 oder 7 endet.

> ich weiß nicht, wie ich an so eine Aufgabe herangehe!
> Induktion ? Wird wohl schwierig. Ein Widerspruchsbeweis
> bietet sich durch die Art der Aufgabenstellung an, aber mit
> welchen Argumenten?

Wenn n die Zahl ist, die wir untersuchen, dann zerlegen wir sie in n = [mm] 2^{r}*5^{s}*n' [/mm] so, daß n' zu 10 teilerfremd ist. Da wir genau die Teiler untersuchen, die zu 10 teilerfremd sind, können wir statt n auch n' untersuchen, also annehmen, daß n selbst zu 10 teilerfremd ist, also auf 1, 3, 7 oder 9 endet.

Wenn d ein Teiler ist, ist d' = n/d ebenfalls ein Teiler. Die Abb. d [mm] \mapsto [/mm] d' ist bijektiv. Wie bildet sie die verschiedenen Teiler ab, wenn a) n auf 3 oder 7 endet und wenn b) n auf 1 oder 9 endet?

Bei b) ist glaubich noch etwas sorgfältige Argumentation erforderlich.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]