matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenEndomorphismus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Endomorphismus
Endomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Do 22.01.2009
Autor: MartinP

Aufgabe
Sei [mm] \1V \subseteq \IR^{3} [/mm] der Lösungsraum von [mm] \1x+y+2z=0 [/mm] , und sei [mm] \1F:V \to \1V [/mm] der Endomorphismus [mm] \1F(x,y,z)=(x-3y-2z,x+y,y+z-x). [/mm] Berechnen Sie [mm] \1det(F). [/mm]

[mm] \1(i) [/mm] Zunächst bilde ich eine Basis des Lösungsraums von F und setze dafür :

[mm] \1z=b [/mm] und  [mm] \1y=a [/mm] daraus folgt dann [mm] \1x=-a-2b [/mm]

Daraus bilde ich dann:

[mm] \vektor{x \\ y \\ z}=\vektor{-a-2b \\ a \\ b }= a\vektor{ -1 \\ 1 \\ 0} [/mm] + [mm] b\vektor{ -2 \\ 0 \\ 1 } [/mm]

Ich benenne die beiden mit [mm] \1a_1=\vektor{ -1 \\ 1 \\ 0} [/mm] & [mm] \1b_1=\vektor{ -2 \\ 0 \\ 1 } [/mm]

[mm] \1(ii) [/mm] Von diesen beiden (Basis-)Vektoren berechne ich dann die jeweiligen Bilder von F:

[mm] \1F(-1,1,0)=(-4,0,2) [/mm] = [mm] a_2 [/mm]
[mm] \1F(-2,0,1)=(-4,-2,3) [/mm] = [mm] b_2 [/mm]

[mm] \1(iii) [/mm] Im Bezug auf die Basisvektoren sehe ich, dass [mm] \1F(a_1)=a_2=2b_1 [/mm] und [mm] \1F(b_1)=b_2=3b_1-2a_1 [/mm]

An dieser Stelle komme ich einfach nicht weiter. Ich könnte noch [mm] b_2=\bruch{3}{2}a_2-2a_1 [/mm] setzen, aber das löst meine Denkblockade einfach nicht auf.

Ist die Vorgehensweise überhaupt richtig? Mein Übungsleiter hat sie zumindest mal theoretisch erklärt und gemeint, dass man das so machen soll.

[mm] \1LG \1Martin [/mm]

        
Bezug
Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Do 22.01.2009
Autor: fred97


> Sei [mm]\1V \subseteq \IR^{3}[/mm] der Lösungsraum von [mm]\1x+y+2z=0[/mm] ,
> und sei [mm]\1F:V \to \1V[/mm] der Endomorphismus
> [mm]\1F(x,y,z)=(x-3y-2z,x+y,y+z-x).[/mm] Berechnen Sie [mm]\1det(F).[/mm]
>  [mm]\1(i)[/mm] Zunächst bilde ich eine Basis des Lösungsraums von F
> und setze dafür :
>  
> [mm]\1z=b[/mm] und  [mm]\1y=a[/mm] daraus folgt dann [mm]\1x=-a-2b[/mm]
>
> Daraus bilde ich dann:
>  
> [mm]\vektor{x \\ y \\ z}=\vektor{-a-2b \\ a \\ b }= a\vektor{ -1 \\ 1 \\ 0}[/mm]
> + [mm]b\vektor{ -2 \\ 0 \\ 1 }[/mm]
>  
> Ich benenne die beiden mit [mm]\1a_1=\vektor{ -1 \\ 1 \\ 0}[/mm] &
> [mm]\1b_1=\vektor{ -2 \\ 0 \\ 1 }[/mm]
>  
> [mm]\1(ii)[/mm] Von diesen beiden (Basis-)Vektoren berechne ich dann
> die jeweiligen Bilder von F:
>  
> [mm]\1F(-1,1,0)=(-4,0,2)[/mm] = [mm]a_2[/mm]
>  [mm]\1F(-2,0,1)=(-4,-2,3)[/mm] = [mm]b_2[/mm]
>  
> [mm]\1(iii)[/mm] Im Bezug auf die Basisvektoren sehe ich, dass
> [mm]\1F(a_1)=a_2=2b_1[/mm] und [mm]\1F(b_1)=b_2=3b_1-2a_1[/mm]
>  



Das ist doch prima !

Du hast also:  [mm] $F(a_1)=0a_1+2b_1$ [/mm] und [mm] $F(b_1) [/mm] = [mm] -2a_1+3b_1$ [/mm]

Damit hat F bezgl. der Basis { [mm] a_1, b_1 [/mm]  } von V die Abbildungsmatrix

[mm] \pmat{ 0 & -2 \\ 2 & 3 } [/mm]

und somit ist $det(F) = [mm] det\pmat{ 0 & -2 \\ 2 & 3 } [/mm] = 4$

FRED



> An dieser Stelle komme ich einfach nicht weiter. Ich könnte
> noch [mm]b_2=\bruch{3}{2}a_2-2a_1[/mm] setzen, aber das löst meine
> Denkblockade einfach nicht auf.
>  
> Ist die Vorgehensweise überhaupt richtig? Mein Übungsleiter
> hat sie zumindest mal theoretisch erklärt und gemeint, dass
> man das so machen soll.
>  
> [mm]\1LG \1Martin[/mm]  


Bezug
                
Bezug
Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 Do 22.01.2009
Autor: MartinP

Oh mein Gott - vielen Dank!

Da hätte man aber auch wirklich selbst darauf kommen können.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]