matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEndomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Endomorphismus
Endomorphismus < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismus: Tipp und Ansatz
Status: (Frage) beantwortet Status 
Datum: 09:56 So 04.05.2008
Autor: Leipziger

Aufgabe
Sei [mm] f:V\to [/mm] V ein K-linearer Endomorphismus mit dim [mm] V<\infty [/mm] und dem Kern W := Ker(f).
Weiter sei
f’: [mm] V’\to [/mm] V’, v + [mm] W\mapsto [/mm] f(v) + W,
der durch f auf dem Faktorraum V’:= V/W induzierte Endomorphismus. Zeigen Sie für j=0,1,..gilt
Ker (f’^{j}) = [mm] Ker(f^{j+1})/W. [/mm]
Dabei bezeichne f’^{0} die identische Abbildung.

Hallo,

ich find einfach keinen Ansatz, könnte mir Jemand eine Hilfestellung geben, wäre sehr dankbar!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 So 04.05.2008
Autor: Leipziger

Hat keiner eine Idee?

Bezug
        
Bezug
Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 So 04.05.2008
Autor: angela.h.b.


> Sei [mm]f:V\to[/mm] V ein K-linearer Endomorphismus mit dim [mm]V<\infty[/mm]
> und dem Kern W := Ker(f).
>  Weiter sei
>  f’: [mm]V'\to[/mm] V’, v + [mm]W\mapsto[/mm] f(v) + W,
>  der durch f auf dem Faktorraum V’:= V/W induzierte
> Endomorphismus. Zeigen Sie für j=0,1,..gilt
>  Ker (f’^{j}) = [mm]Ker(f^{j+1})/W.[/mm]
>  Dabei bezeichne f’^{0} die identische Abbildung.
>  Hallo,
>  
> ich find einfach keinen Ansatz, könnte mir Jemand eine
> Hilfestellung geben, wäre sehr dankbar!

Hallo,

[willkommenmr].

ich würde Dir gerne Hilfestellung geben, möchte aber weder Überflüssiges schreiben noch die ganze Aufgabe allein lösen.

Du könntest uns das Hilfestellunggeben sehr erleichtern, würdest Du sagen, wo es klemmt.

Wie weit bist Du denn gekommen, woran scheiterst Du?

Verstehst Du die "Zutaten" der Aufgabe, den Faktorraum und die Abbildung f'?


Ein Tip wäre, die Aussage erstmal für eine konkrete Abbildung zu testen.

Etwa für [mm] f:\IR^3\to \IR^3 [/mm]
mit
[mm] f\vektor{1 \\ 0\\0}:=\vektor{1 \\ 2\\3} [/mm]
[mm] f\vektor{0 \\ 1\\0}:=\vektor{0 \\ 0\\0} [/mm]
[mm] f\vektor{0 \\ 0\\1}:=\vektor{0 \\ 0\\0}. [/mm]

Welches ist dann f'?

Stimmt die Aussage für j=0, 1,2 ?

Gruß v. Angela



Bezug
                
Bezug
Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 So 04.05.2008
Autor: Leipziger

Tut mir leid Angelika, ich hab leider gar keine ahnung, darum hab ich die aufgabe überhaupt erst ins forum gestellt :/

Bezug
                        
Bezug
Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 So 04.05.2008
Autor: angela.h.b.


> Tut mir leid Angelika, ich hab leider gar keine ahnung,
> darum hab ich die aufgabe überhaupt erst ins forum gestellt
> :/

Hallo,

wenn du wirklich nichts weißt, ist das natürlich sehr schlecht.
Man kann hier ja nicht die lineare Algebra von Adam und Eva aufrollen.

Ich frge mich nun natürlich, welche Art Hilfe Du hier erwartest hast.

Gruß v. Angela


Bezug
                                
Bezug
Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 So 04.05.2008
Autor: Leipziger

Finds interessant, dass Unwissenheit oft Unfreundlichkeit als Folge hat!

Wollte nur einen Ratschlag bzw. einen Tipp wie ich vorgehen kann um selbst die Lösung zu erarbeiten. Ich verlange keine Ergebnisse oder sonstiges, lediglich Hilfestellungen, die mir beim Studium nicht immer ersichtlich gemacht werden.


Bezug
                                        
Bezug
Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 So 04.05.2008
Autor: angela.h.b.


> Wollte nur einen Ratschlag bzw. einen Tipp wie ich vorgehen
> kann um selbst die Lösung zu erarbeiten.

Hallo,

genau das hatte ich hatte ja versucht Dir zu geben, leider bist Du weder auf meine Fragen noch auf die Anregung, die Aussage mal anhand einer konkreten Abbildung f zu testen, eingegangen.

So ist das Helfen dann wirklich schwer.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]