matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEndomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Endomorphismus
Endomorphismus < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismus: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:54 So 24.02.2008
Autor: falko43

Guten Morgen!

Ich hatte in einer Klausur folgende Aufgabe zu lösen:

a) Beschreiben Sie das Problem der Diagonalisierbarkeit  eines Vektorraumendomorphismus und seiner Lösung mit Hilfe der Eigenwerttheorie.

b) Geben Sie ein Beispiel eines nichtdiagonalisierbaren Endomorphismus und beschreiben Sie die Transformation auf die Jordansche Normalform.

Kann mir da jemand bei der Musterlösung helfen? Ich bin etwas überfordert...

Danke!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 So 24.02.2008
Autor: Manatu

Hallo Falko,

als Anfang hilft dir vielleicht schon folgendes (ich weiß nicht, wie ausführlich da eine Antwort von euch erwartet wird):

a.) Das Problem der Diagonalisierbarkeit eines Endomorphismus ist das Problem, eine Basis (bzw. Transformationsmatrix) so zu finden, dass die Matrixdarstellung des Endomorphismus bzgl. dieser Basis eine Diagonalmatrix ist.
Die Eigenwerttheorie löst das Problem wie folgt: Ist die Summe der Dimensionen aller Eigenräume des Endomorphismus' genau gleich der Dimension des Vektorraums selbst, dann ist der Endomorphismus diagonalisierbar. Wählt man die Basisvektoren aller Eigenräume als Spalten eine Matrix M, so sind $M$ und [mm] $M^{-1}$ [/mm] die Transformationsmatrizen, das heißt, [mm] $M^{-1}AM$ [/mm] hat Diagonalform, wobei $A$ eine Darstellung des Endomorphismus' als Matrix ist.

b.) Aus obiger Beschreibung ergibt sich, dass ein Endomorphismus nur dann diagonalisierbar ist, wenn das Minimalpolynom nur einfache Nullstellen hat, jeder Eigenwert im Minimalpolynom also nur Ordnung 1 hat. Als nicht-diagonalisierbaren Endomorphismus kann man z.B. also einen wählen, dessen Minimalpolynom auch doppelte Nullstellen hat, z.B.
[mm] $A=\begin{pmatrix}1&0&0\\0&3&-1\\0&0&3\end{pmatrix}$ [/mm]
Die Eigenwerte sind 1 und 3, wobei beide Eigenräume eindimensional sind. (Das Problem ist dabei, dass der Faktor (x-3) im charakteristischen Polynom quadratisch auftaucht, also mit Ordnung 2. Man würde also erwarten, dass der Eigenraum zu 3 auch zweidimensional ist. Ist er aber nicht, es gibt also "zu wenige Eigenvektoren zum Eigenwert 3".)
Der Endomorphismus mit der Darstellung A ist also nicht diagonalisierbar. Man nimmt deshalb nun nicht die Basisvektoren der Eigenräume, sondern verallgemeinert die Eigenräume. Man berechnet die Kerne zu [mm] $(A-\lambda_i Id)^{m_i}$, [/mm] wobei [mm] $m_i$ [/mm] die Ordnung vom i-ten Eigenwert im Minimalpolynom ist. Dann nimmt man die Basisvektoren von diesen Kernen alle zusammen als Spalten einer Matrix $T$. Diese ist dann die Transformationsmatrix. Oder anders ausgedrückt: Nimmt man die Basisvektoren der Kerne zusammen, so bilden sie eine Basis vom ganzen Vektorraum, bzgl. derer der Endomorphismus Diagonalkästchengestalt hat. Dabei kann man die Basen der Kerne immer auch so wählen, dass die Diagonalkästchenform genau die Jordanform ist.


Ich weiß nicht, ob's wirklich eine Musterlösung ist, aber vielleicht hilft es dir dabei, eine Musterlösung zu erstellen.

Lieben Gruß,

Manatu

Bezug
        
Bezug
Endomorphismus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 Mi 27.02.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]