matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEndomorphismenmenge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Endomorphismenmenge
Endomorphismenmenge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismenmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Sa 15.11.2008
Autor: kittie

Hallo zusammen,

kann mir vielleicht jemand dabei helfen die Menge [mm] End(\IZ)=\{f:\IZ\rightarrow \IZ; f ist Homomorphismus \} [/mm] der Menge der Endomorphismen von [mm] (\IZ,+) [/mm] nach [mm] (\IZ,+) [/mm] zu bestimmen!?

Kann man das irgendwie geschickt anstellen, ohne alle Möglichkeiten auszuprobieren.

Habe bereits bewiesen, dass End(G) mit (G,+) abelscher Gruppe mit (f+g)(x):=f(x)+g(x) und (f*g)(x)=f(g(x)) ein Ring ist!

Viele Grüße

die kittie

        
Bezug
Endomorphismenmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Sa 15.11.2008
Autor: andreas

hi

überlege dir, dass ein endmomorphismus $f: [mm] \mathbb{Z} \longrightarrow \mathbb{Z}$ [/mm] bereits durch $f(1)$ festgelegt ist (bestimme zuerst $f(n)$ für $n [mm] \in \mathbb{N}$ [/mm] in abhängigkeit von $f(1)$, dann auch für negative $n$). auf was kann man nun die $1$ abbilden?

grüße
andreas

Bezug
                
Bezug
Endomorphismenmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Sa 15.11.2008
Autor: kittie

also das neutrale element muss ja auf sich selbst abgebildet werden in diesem fall, aufgrund der homomorphieeigenschaft!
Aber was meinst du mit der 1 bzw. f(1)?kann dir noch nicht ganz folgen, leider!
Kannst du mir mit einem Ansatz viell. nochmal weiterhelfen?

vg

Bezug
                        
Bezug
Endomorphismenmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Sa 15.11.2008
Autor: andreas

hi

> also das neutrale element muss ja auf sich selbst
> abgebildet werden in diesem fall, aufgrund der
> homomorphieeigenschaft!

ja.


>  Aber was meinst du mit der 1 bzw. f(1)?kann dir noch nicht
> ganz folgen, leider!

angenommen es ist $f: [mm] \mathbb{Z} \longrightarrow \mathbb{Z}$ [/mm] ein endomorphismus. es sei $f(1) = m [mm] \in \mathbb{Z}$, [/mm] was ist dann $f(2)$ (bedenke $2 = 1 + 1$)? und was ist $f(3)$?


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]