matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEndomorphismen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Endomorphismen
Endomorphismen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:23 Mi 11.05.2005
Autor: gymnozist

Hi,
ich habe ein kleines Problem mit der folgenden Aufgabe:
Sei V ein endlich dimensionaler Vektorraum, sei f: V---> V ein Endomorphismus.
Zeige: Es gibt f-invariante Unterräume [mm] V_1 [/mm] und [mm] V_2 [/mm] mit V = [mm] V_1 \oplus [/mm] (soll direkte Summe heißen) [mm] V_2, [/mm] sodass gilt: Die Einschränkung f | [mm] V_1 [/mm] ist nilpotent, dagegen ist die Einschränkung f | [mm] V_2 [/mm] ein Isomorphismus [mm] V_2 [/mm] ---> [mm] V_2. [/mm]
Ich habe versucht, da über Eigenwerte ranzugehen, weiß aber absolut nicht ob ich mir im gewissen Sinne irgendeine Matrix so stricken soll, dass das eintritt (und da weiß ich noch nicht so genau wie), oder ob man da anders herangeht.
Wäre echt toll, wenn mir jemand helfen könnte.
Danke

        
Bezug
Endomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mi 11.05.2005
Autor: Stefan

Hallo Sebastian!

Definiere:

[mm] $V_1:=Kern(f^s)$, [/mm]

[mm] $V_2:=Bild(f^s$), [/mm]

wobei $s [mm] \in \IN$ [/mm] minimal mit der Eigenschaft ist, dass die Folge aufsteigender Unterräume

$Kern(f) [mm] \subset Kern(f^2) \subset \ldots$ [/mm]

stationär wird, also:

[mm] $Kern(f^s) [/mm] = [mm] Kern(f^{s+1})$, [/mm]

aber:

[mm] $Kern(f^{s-1}) \subsetneq Kern(f^s)$. [/mm]

Ist dir jetzt klar, warum dann alles erfüllt ist? Versuche dir das bitte mal selber zu überlegen und teile uns deine Gedanken bitte zur Kontrolle hier mit. :-)

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]