matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEndomorphismen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Endomorphismen
Endomorphismen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Mo 04.06.2007
Autor: maggi20

Aufgabe
Auf dem vektorraum R² betrachte man die Endomorphismen f und g, gegeben durch
f((x,y))= (x+2y, x-y), g((x,y)= (2x-3y, x+y)

Ergänzen Sie diese zu einer Basis von Hom(R²,R²)

Hallo,

könnte mir bitte jemand bei dieser Aufagbe weiterhelfen. Schreib morgen eine Klausur!!!!!

Ich habe für f,g eine Matrix bezgl. der Standardbasis bestimmt.

Für Af= ( 1 2
              1 -1)

     Ag= ( 2 -3
              1 1 )

Jetzt sollen wir zeigen, dass diese linear unabhängig sind. Wenn ich jetzt ein lineares Gleichungssystem aufstelle erhalte ich mehr Variablen als Gleichungen, also komme ich auf kein eindeutiges Ergebnis.  

Da die Dimension von Hom(R²,R²)= 4 benötige ich noch zwei Matrizen.
Also betrachte ich die Standardbasen bzgl. M 2x2 (R).
Wie ergänze ich die linear unabhängige Menge nun zu einer Basis?

Danke!    

        
Bezug
Endomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mo 04.06.2007
Autor: angela.h.b.


> Auf dem vektorraum R² betrachte man die Endomorphismen f
> und g, gegeben durch
> f((x,y))= (x+2y, x-y), g((x,y)= (2x-3y, x+y)
>
> Ergänzen Sie diese zu einer Basis von Hom(R²,R²)
>  
> Hallo,
>  
> könnte mir bitte jemand bei dieser Aufagbe weiterhelfen.
> Schreib morgen eine Klausur!!!!!
>  
> Ich habe für f,g eine Matrix bezgl. der Standardbasis
> bestimmt.
>
> Für [mm] A_f=\pmat{ 1 & 2 \\ 1 & -1 } [/mm]
>  
> [mm] A_g= \pmat{ 2 & -3 \\ 1 & 1 } [/mm]


Hallo,

diese beiden Matrizen sind jetzt die Vektoren, die Du auf lineare Unabhängigkeit prüfen mußt.

Also ist zu lösen

[mm] aA_f+bA_g=0 [/mm]

[mm] <==>\pmat{ a & a \\ a & -a }+ \pmat{ 2b & -3b \\ b & b }= \pmat{ 0 & 0 \\ 0 & 0 } [/mm]

[mm] <==>\pmat{ a+2b & a-3b \\ a+b & -a+b }= \pmat{ 0 & 0 \\ 0 & 0 } [/mm]

Hieraus erhältst Du 4 Gleichungen mit 2 Variablen.



> Da die Dimension von Hom(R²,R²)= 4 benötige ich noch zwei
> Matrizen.
> Also betrachte ich die Standardbasen bzgl. M 2x2 (R).

Da könntest Du durch systematisches Experimentieren tun.

Finde zunächst, welche der Matrizen [mm] \pmat{ 1 & 0 \\ 0 & 0 }, \pmat{ 0 & 1 \\ 0 & 0 },\pmat{ 0 & 0 \\ 1 & 0 }, \pmat{ 0 & 0 \\ 0 & 1 } [/mm]

die beiden, die Du schon hast, zu einer linear unabhängigen Menge von drei  Matrizen ergänzt,

anschließend probierst Du so lange, bis Du findest, daß eine der verbleibenden eine gute Ergänzung ist.

(Da man beim Rechnen so viele Nullen hat, ist das nicht arg mühsam.)

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]