matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraEndliche Gruppen, Zentrum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Endliche Gruppen, Zentrum
Endliche Gruppen, Zentrum < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endliche Gruppen, Zentrum: Aufgabe1
Status: (Frage) überfällig Status 
Datum: 13:43 Sa 13.05.2006
Autor: sonnenfee23

Aufgabe
Sei G endliche Gruppe. Sei das Zentrum Z(G) = 1, sei A := AutG und I := InnG. Beweisen Sie: ist G einfach, so ist AutG = InnG.

Mir fehlt jeglicher Ansatz, wie ich an die Lösung dieser Aufgabe rangehe... Habe mir bereits alle Definitionen verinnerlicht, doch komme nicht auf die passende Idee..
Hoffe Ihr könnt mir weiterhelfen.
Danke schonmal, Mfg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Endliche Gruppen, Zentrum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 So 14.05.2006
Autor: felixf

Hallo!

> Sei G endliche Gruppe. Sei das Zentrum Z(G) = 1, sei A :=
> AutG und I := InnG. Beweisen Sie: ist G einfach, so ist
> AutG = InnG.
>  Mir fehlt jeglicher Ansatz, wie ich an die Lösung dieser
> Aufgabe rangehe... Habe mir bereits alle Definitionen
> verinnerlicht, doch komme nicht auf die passende Idee..
> Hoffe Ihr könnt mir weiterhelfen.
>  Danke schonmal, Mfg

Bist du dir sicher, das die Aussage ueberhaupt stimmt? Unter den sporadischen einfachen Gruppen gibt es 12, die echte aeussere Automorphismen haben! (Und fuer all die gilt $|Z(G)| = 1$.)

LG Felix


Bezug
                
Bezug
Endliche Gruppen, Zentrum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 So 14.05.2006
Autor: sonnenfee23


> Hallo!
>  
> > Sei G endliche Gruppe. Sei das Zentrum Z(G) = 1, sei A :=
> > AutG und I := InnG. Beweisen Sie: ist G einfach, so ist
> > AutG = InnG.
>  >  Mir fehlt jeglicher Ansatz, wie ich an die Lösung
> dieser
> > Aufgabe rangehe... Habe mir bereits alle Definitionen
> > verinnerlicht, doch komme nicht auf die passende Idee..
> > Hoffe Ihr könnt mir weiterhelfen.
>  >  Danke schonmal, Mfg
>
> Bist du dir sicher, das die Aussage ueberhaupt stimmt?
> Unter den sporadischen einfachen Gruppen gibt es 12, die
> echte aeussere Automorphismen haben! (Und fuer all die gilt
> [mm]|Z(G)| = 1[/mm].)
>  
> LG Felix
>  

Ja ich bin mir sicher, dass so die Aufgabenstellung ist, da diese gerade vor mir liegt.

Bezug
                        
Bezug
Endliche Gruppen, Zentrum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 So 14.05.2006
Autor: felixf

Hallo!

> Ja ich bin mir sicher, dass so die Aufgabenstellung ist, da
> diese gerade vor mir liegt.

Falls hier niemand mehr eine Loesung hinschreibt, waer es schoen wenn du die Muesterloesung / Loesung aus eurem Tutorium hier posten wuerdest.

LG Felix


Bezug
        
Bezug
Endliche Gruppen, Zentrum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 16.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]