matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungEllipsengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Ellipsengleichung
Ellipsengleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ellipsengleichung: Frage zu Lösung einer Glchg.
Status: (Frage) beantwortet Status 
Datum: 19:59 Mi 23.03.2005
Autor: AndyStyleZ

Hallo!
Ich habe nächste Woche eine Schularbeit in Mathematik und hab das Lernen bitter nötig: Hier meine Frage:

Gegeben sind 2 Punkte auf einer Ellipse:
P(3,6/4)
Q(-4,8/3)

Ermittle die Gleichung der Ellipse!
Nur wie geht es dann weiter? schlussendlich will ich a2 und daraus dann b2 errechnent! Bitte helft mir!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ellipsengleichung: Alle Angaben?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Mi 23.03.2005
Autor: Loddar

Hallo AndyStyleZ!


[willkommenmr] !!

Hast Du hier alle Angaben auch gepostet? Wie bei einem Kreis sollte man ja wohl mindestens drei Punkte wissen ...


Gruß
Loddar


Bezug
                
Bezug
Ellipsengleichung: Komplette Angabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:27 Mi 23.03.2005
Autor: AndyStyleZ

Hier die Komplette Angabe:

Von einer Ellipse in Hauptlage sind zwei Punkte P und Q gegeben.
1) Ermittle die Gleichung der Ellipse!
2) Berechne a, b, e
3) Berechne die Koordinaten der Scheitel und der Brennpunkte

P(3,6/4)
Q(-4,8/3)

Mehr steht hier in meinem Buch auch nicht...

Im Lösungsheft steht zu 1) folgendes: a=6, b=5 daraus ergibt sich  dass die Gleichung [mm] (25x^2) [/mm] + [mm] (36y^2) [/mm] = 900 ist.


Bezug
        
Bezug
Ellipsengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Mi 23.03.2005
Autor: moudi

Hallo AndyStyleZ

Deine Ellipse in Normallage hat das Zentrum im Koordinatenursprung und die Ellipsenachsen sind die Koordinatenachsen.

Eine solche Ellipse hat die Gleichung: [mm] $\left(\frac xa\right)^2+\left(\frac yb\right)^2=1$. [/mm]

Jetzt kann du deine Punkte P(x,y)=P(3.6,4) und Q(x,y)=Q(-4.8,3) in diese Gleichung einsetzen und du erhälst ein Gleichungssystem für die Parameter a und b, das du lösen musst. Wenn a > b ist , dann liegen die Brennpunkte auf der x-Achse, und wenn b>a ist liegen die Brennpunkte auf der y-Achse.

In jedem Fall ist die grössere der beiden Zahlen a,b die Länge der grossen Halbachse und die kleinere Zahl ist Länge der kleinen Halbachsen.

Die Brennpunkte haben die Entfernung c vom Koordinatenursprung, also wenn sie auf der x-Achse liegen, gilt [mm] $F_1(-c,0)$ [/mm] und [mm] $F_2(c,0)$. [/mm] Es gilt [mm] $c=\sqrt{a^2-b^2}$ [/mm] (wenn a,b die Längen der grossen und kleinen Halbachse sind).

Mit e ist (so nehme ich an) die numerische Exzentrizität gemeint. Diese Zahl ist ein Mass dafür wie Exzentrisch die Ellipse ist, d.h. wie weit die Brennpunkte im Verhältnis zur grossen Halbachse vom Ellipsenzentrum entfernt sind. Es gilt daher [mm] $e=\frac [/mm] ca$.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]