matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperElemente einer Faktorgruppe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Elemente einer Faktorgruppe
Elemente einer Faktorgruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elemente einer Faktorgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Mo 30.05.2011
Autor: quarkstollen88

Hallo!

Ich habe leider noch ein Problem mit dem Verständnis von Faktorgruppen, ich hoffe mir kann jemand helfen.

Hier ist das ganze mal am Beispiel der PSL-Gruppe:
[mm] SL_{2}(\IZ) [/mm] sind ja alle Matrizen mit Determinante 1 und einträgen in [mm] \IZ. [/mm] Die [mm] PSL_{2}(\IZ) [/mm] ist gleich [mm] SL_{2}(\IZ) [/mm] \ E, wobei E:= [mm] \{E_{2},-E_{2}\} [/mm] und [mm] E_{n} [/mm] die Einheitsmatrix ist.

Nach dem Schema dass G [mm] \backslash [/mm] H = [mm] \{ gH | g \in G \} [/mm] ist, wären dann ja in unserem Falle die gH = {g, -g}, oder?
D.h. die PSL hätte dann halb soviele Elemente wie die SL (?), und zwar dadurch dass 2 Matrizen A, -A aus SL in der PSL zu einem Element (einer Menge) zusammengefasst werden.
D.h. [mm] PSL_{2}(\IZ) [/mm] = { {A,-A} | A [mm] \in SL_{2}(\IZ) [/mm] }?
Und wenn man dass dann nur mit Vertretern der Restlassen schreibt, dann wäre das [mm] PSL_{2}(\IZ) [/mm] = { [A] | A [mm] \in SL_{2}(\IZ) [/mm] }...?

Stimmt das soweit?

        
Bezug
Elemente einer Faktorgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Mo 30.05.2011
Autor: Berieux

Hallo!

> Hallo!
>  
> Ich habe leider noch ein Problem mit dem Verständnis von
> Faktorgruppen, ich hoffe mir kann jemand helfen.

Zunächst zur schreibweise. Eine Faktorgruppe wird G/H, nicht G \ H notiert.

>  
> Hier ist das ganze mal am Beispiel der PSL-Gruppe:
>  [mm]SL_{2}(\IZ)[/mm] sind ja alle Matrizen mit Determinante 1 und
> einträgen in [mm]\IZ.[/mm] Die [mm]PSL_{2}(\IZ)[/mm] ist gleich [mm]SL_{2}(\IZ)[/mm]
> \ E, wobei E:= [mm]\{E_{2},-E_{2}\}[/mm] und [mm]E_{n}[/mm] die
> Einheitsmatrix ist.
>  
> Nach dem Schema dass G [mm]\backslash[/mm] H = [mm]\{ gH | g \in G \}[/mm]
> ist, wären dann ja in unserem Falle die gH = {g, -g},
> oder?

Ja. Man schreibt diese Menge dann aber eher gemeinhin als [g] und bezeichnet sie als Äquivalenzklasse (so wie du es unten ja auch machst). Entscheidend ist noch, dass die Untergruppe die rausgeteilt wird ein Normalteiler sein muss, da sonst G/H keine Gruppenstruktur trägt.

>  D.h. die PSL hätte dann halb soviele Elemente wie die SL
> (?),

Eine solche Aussage ist natürlich insofern nicht ganz sinnvoll, als dass sowohl SL(2, Z) als auch PSL(2, Z) unendlich viele Elemente enthalten.
Wäre SL(2,Z) eine endlich Gruppe, würde das aber so stimmen (Satz von Lagrange).

> und zwar dadurch dass 2 Matrizen A, -A aus SL in der
> PSL zu einem Element (einer Menge) zusammengefasst werden.
> D.h. [mm]PSL_{2}(\IZ) = { {A,-A} | A \in SL_{2}(\IZ)\}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}?

> Und wenn man dass dann nur mit Vertretern der Restlassen
> schreibt, dann wäre das [mm]PSL_{2}(\IZ) = { [A] | A \in SL_{2}(\IZ)\}[/mm]
> ...?
>  
> Stimmt das soweit?

Ja. Entscheidend ist halt, dass das nicht irgendwelche wilden Mengen sind, sondern eben Äquivalenzklassen.

Grüße,
Berieux


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]