matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikElemente der Systemmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Regelungstechnik" - Elemente der Systemmatrix
Elemente der Systemmatrix < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elemente der Systemmatrix: Gegeben: Ruhelagen
Status: (Frage) beantwortet Status 
Datum: 13:24 So 23.01.2011
Autor: fittipaldi

Aufgabe
Gegeben sei folgendes System: [mm] \bruch{dx}{dt} [/mm] = [mm] A*\vec{x}. [/mm] A ist definiert mit [mm] \pmat{ -3 & a \\ b & c }. [/mm] Weiters sind die folgenden Ruhelagen des Systems gegeben: [mm] \vektor{2 \\ 2}, \vektor{1 \\ 1} [/mm] und [mm] \vektor{3 \\ 3}. [/mm] Bestimmen Sie a, b und c.

OK, mit den Ruhelagen ist schon offensichtlich, dass a=3 ist ... Wie geht man mit b und c weiter?!

Bitte um tips ... hab keine Idee, danke!

        
Bezug
Elemente der Systemmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mo 24.01.2011
Autor: metalschulze

Hallo fittipaldi,

weiterhin folgt nur noch b = -c sonst sind da keine weiteren Informationen drin fürchte ich.
Hast du denn nichts weiter gegeben? Eine Ausgangsgleichung y = ... oder einen Zusammenhang zwischen [mm] x_1 [/mm] und [mm] x_2 [/mm] (falls nicht [mm] \dot{x_1} [/mm] = [mm] x_2) [/mm] ?

Weiterhin haben lineare Systeme entweder genau eine oder unendlich viele Ruhelagen, aber das bringt uns hier auch nicht weiter....

Gruß Christian

Bezug
                
Bezug
Elemente der Systemmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Mo 24.01.2011
Autor: fittipaldi

Das System hat unendlich viel Ruhelagen, aber wie du gesagt hast, hilft das nicht mehr weiter. Leider habe ich keine weitere Informationen. Ausser vlt. (das ist jetzt eine Vermutung), dass die Trajektorienvektoren (-linien) in Richtung zu den Ruhelagen gehen, also das System ist stabil.

Wie könnte mir das helfen, falls ich z.B. folgendes wusste: y(t) = [mm] \vektor{2 \\ -4}x [/mm] ? Das ist nicht von dem Beispiel aber ich möchte mir die Situation erklären. D.h. wenn ich eine "Halb-"bekannte Matrix und der Ausgang hab, kann mir das irgendwie weiterhelfen?

Danke!

Bezug
                        
Bezug
Elemente der Systemmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Di 25.01.2011
Autor: metalschulze


> Das System hat unendlich viel Ruhelagen, aber wie du gesagt
> hast, hilft das nicht mehr weiter. Leider habe ich keine
> weitere Informationen.

in dem Fall würde ich sagen, dass b und c beliebig wählbar sind, und nur der Bedingung b = -c genügen müssen, weitere Aussagen kann man nicht ableiten.

> Ausser vlt. (das ist jetzt eine
> Vermutung), dass die Trajektorienvektoren (-linien) in
> Richtung zu den Ruhelagen gehen, also das System ist
> stabil.

die Aussage zur Stabilität gibt dir auch nur noch eine zusätzliche Ungleichung: c < -3 und damit b > 3, sind aber immer noch unendlich viele mögliche Werte, und wenn die Aussage zur Stabilität nur vermutet ist...

Das mit dem y war nur eine nicht ganz zu Ende gedachte Idee, könnte Aussagen enthalten wie [mm] x_1 [/mm] und [mm] x_2 [/mm] miteinander zu tun haben...

Gruß Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]