matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesElementargeometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Elementargeometrie
Elementargeometrie < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elementargeometrie: Ungleichungen- so richtig?
Status: (Frage) beantwortet Status 
Datum: 19:28 Do 05.05.2005
Autor: Tuelin

Hallöschen,

ich habe leider nicht so viel Erfahrung mit Beweisen und steh vor einer Aufgabe, wo ich nicht weiß, ob ich diese schon bewiesen hab.

Aufgabe:

Es seien Sa, Sb, Sc die Längen der Seitenhalbierenden und a, b, c die Längen der Seiten eines Dreiecks. Beweisen Sie die Ungleichungen:
[mm] \bruch{3}{4}(a+b+c) \le [/mm] Sa+Sb+Sc [mm] \le [/mm] a+b+c


Meine Lösung:
[mm] \bruch{2}{3}Sa+\bruch{2}{3}Sb \ge [/mm] c


[mm] \bruch{2}{3}Sb+\bruch{2}{3}Sc \ge [/mm] a


[mm] \bruch{2}{3}Sa+\bruch{2}{3}Sc \ge [/mm] b


[mm] \Rightarrow \bruch{4}{3} [/mm] (Sa+Sb+Sc) [mm] \ge [/mm] a+b+c


2Sa  [mm] \le [/mm] b+c
2Sb [mm] \le [/mm] a+c
2Sc [mm] \le [/mm] a+b

[mm] \Rightarrow [/mm] 2(Sa+Sb+Sc) [mm] \le [/mm] 2a+2b+2c


Bin ich jetzt fertig oder muss ich noch irgendetwas erklären?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke

        
Bezug
Elementargeometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Do 05.05.2005
Autor: Paulus

Hallo Tuelin

>  
> Es seien Sa, Sb, Sc die Längen der Seitenhalbierenden und
> a, b, c die Längen der Seiten eines Dreiecks. Beweisen Sie
> die Ungleichungen:
>   [mm]\bruch{3}{4}(a+b+c) \le[/mm] Sa+Sb+Sc [mm]\le[/mm] a+b+c
>  
>
> Meine Lösung:
>   [mm]\bruch{2}{3}Sa+\bruch{2}{3}Sb \ge[/mm] c
>  
>
> [mm]\bruch{2}{3}Sb+\bruch{2}{3}Sc \ge[/mm] a
>  
>
> [mm]\bruch{2}{3}Sa+\bruch{2}{3}Sc \ge[/mm] b
>  

Hier sollte man vielleicht noch begründen, warun das so ist. (Schwerlinien teilen sich im Verhältnis 2:1; Dreiecksungleichungen bezogen auf die Dreiecke, ABS, BCS und CAS)

>
> [mm]\Rightarrow \bruch{4}{3}[/mm] (Sa+Sb+Sc) [mm]\ge[/mm] a+b+c
>  
>

Das würde ich noch mit 3/4 multiplizieren, um die Form zu erhalten, wie sie in der Aufgabenstellung zu sehen ist.

> 2Sa  [mm]\le[/mm] b+c
>  2Sb [mm]\le[/mm] a+c
>  2Sc [mm]\le[/mm] a+b
>

Auch das müsstest du irgendwie begründen. Wenn ich ehrlich bin, sehe ich nämlich nicht ein, aufgrund welchen Gesetzes du auf diese Ungleichungen kommst! [verwirrt]

> [mm]\Rightarrow[/mm] 2(Sa+Sb+Sc) [mm]\le[/mm] 2a+2b+2c
>  
>
> Bin ich jetzt fertig oder muss ich noch irgendetwas
> erklären?
>  

Dann würde ich die beiden Teilergebnisse noch zusammenfassen, so dass tatsächlich die Ungleichung der Aufgabenstellung entsteht, gefolgt von dem obligaten q.e.d.

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]