matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInternationale Mathe-OlympiadeElemen. und Ana. Geometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Internationale Mathe-Olympiade" - Elemen. und Ana. Geometrie
Elemen. und Ana. Geometrie < Internationale MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Internationale Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elemen. und Ana. Geometrie: Diskussion
Status: (Umfrage) Beendete Umfrage Status 
Datum: 14:22 Di 01.12.2015
Autor: SinistresFlagellum

Ich habe mich neulich fragt, ob man jede Geometrie Aufgabe von den klassischen Wettberwerben für Schüler, wie die der IMO, auch mit Methoden der analystischen Geometrie lösen könnte anstatt mit Elementargeometrie.

        
Bezug
Elemen. und Ana. Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Di 01.12.2015
Autor: Al-Chwarizmi


> Ich habe mich neulich fragt, ob man jede Geometrie Aufgabe
> von den klassischen Wettberwerben für Schüler, wie die
> der IMO, auch mit Methoden der analystischen Geometrie
> lösen könnte anstatt mit Elementargeometrie.


Hallo

zwar kenne ich mich mit solchen Wettbewerbsaufgaben
nicht so sehr aus, habe jedenfalls damit kaum noch zu tun.
Ich würde aber sagen, dass man wohl jede Geometrieaufgabe,
die man mit "Elementargeometrie" lösen kann, im Prinzip
auch mit den Mitteln der "analytischen Geometrie" lösen
kann.
Es ist aber im Einzelfall oft eher ungeschickt, eine Aufgabe
"analytisch" zu lösen, wenn sie auch mit elementargeometrischen
Überlegungen zu lösen ist. Letzteres ist nämlich oft einfacher
und übersichtlicher.

LG   ,    Al-Chwarizmi


Bezug
        
Bezug
Elemen. und Ana. Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Di 01.12.2015
Autor: UniversellesObjekt

Die mathematische Antwort lautet: Ja, wenn man Elementargeometrie als eine der üblichen Axiomatisierungen, z.B. von []Hilbert und analytische Geometrie als Untersuchen des dreidimensionalen affinen Raumes über den reellen Zahlen interpretiert. Das liegt schlicht daran, dass der affine Raum ein spezielles []Modell der Elementargeometrie liefert. Insbesondere lässt sich jeder Satz, der sich elementargeometrisch beweisen lässt, auch in der analytischen Geometrie beweisen. Eine interessantere Frage wäre, ob sich eine Aussage, in der nur elementargeometrische Begriffe vorkommen, das heißt "Punkt, Gerade, Ebene, liegen, zwischen, kongruent" (siehe Hilbert) genau dann mit Hilberts Axiomen beweisen lässt, wenn sie sich mit linearer Algebra im [mm] $\IR^3$ [/mm] beweisen lässt. Das weiß ich nicht.

Liebe Grüße,
UniversellesObjekt

Bezug
        
Bezug
Elemen. und Ana. Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 04:50 Do 03.12.2015
Autor: fred97


> Ich habe mich neulich fragt, ob man jede Geometrie Aufgabe
> von den klassischen Wettberwerben für Schüler, wie die
> der IMO, auch mit Methoden der analystischen Geometrie
> lösen könnte anstatt mit Elementargeometrie.


Schau mal hier hinein:

http://www.math.uni-bonn.de/ag/ana/SoSe2012/MB02_Skript.pdf

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Internationale Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]