matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körper#Elem. in Faktorgruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - #Elem. in Faktorgruppe
#Elem. in Faktorgruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

#Elem. in Faktorgruppe: Erklärung
Status: (Frage) beantwortet Status 
Datum: 16:42 Mi 07.01.2009
Autor: JustSmile

Hallo ihr!
Ich bin dabei meinen Vorlesungsstoff zu wiederholen und bin grad bei den Faktorgruppen angekommen, wobei mir da noch ein Frage bezüglich der Anzahl der Elemente offen ist:

Es gilt ja zum einen, dass
a [mm] \in [/mm] N [mm] \gdw [/mm] aN=N
und zum anderen nach Lagrange
[G:N]=|G/N|=|G|/|N|
Das zweite gibt mir ja Auskunft über die Anzahl der Elemente in einer Faktorgruppe, nämlich die Anzahl der Elemente in G geteilt durch die des Normalteilers. Dies steht aber im Widerspruch zur Folgerung, die ich aus dem Ersten ziehen würde, nämlich:
Es sind ja in G/N alle Elemente der Form gN, wobei g aus G ist, enthalten. Wenn jetzt dieses g zufällig nicht nur aus G sondern auch noch aus N ist, dann wird gN zu N, also dem Einselement in G/N, was mich zu der Aussage führt, dass |G/N|=|G|-|N|+1 (im Gegensatz zu Lagrange (der wohl richtig ist) mit |G/N|=|G|/|N|), weil es ebend genau |N| Elemente aus G gibt, die zu N werden (deshalb das +1) und alle Anderen erhalten bleiben (also ein [mm] gN\not=N [/mm] ergeben).

Ich hoffe ihr wisst was ich meine und versteht mein Problem und könnt mich aufklären ;-)

Danke schonmal!

        
Bezug
#Elem. in Faktorgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Do 08.01.2009
Autor: PeterB

Du hast schon recht: nur die Elemente aus $N$ werden zum Einselement. Allerdings können auch andere Elemente zusammenfallen: [mm] $g.h\in [/mm] G$ und $gN=hN$. Das heißt, wenn $g$ fest ist, fällt ein beliebiges Element $h=gn$ mit $g$ zusammen. Es sind also jeweils $|N|$ Elemente, die mit $g$ zusammenfallen, und das ist genau die Formel von Lagrange.



Bezug
                
Bezug
#Elem. in Faktorgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Do 08.01.2009
Autor: JustSmile

Okay - viel Dank schonmal für die Antwort! Das leuchtet mir jetzt ein :-)

Eine Frage allerdings noch, die sich gerade auf das bezieht, was du geschrieben hast - vielleicht weißt du das ja auch:
Sind es für jedes g [mm] \in [/mm] G : g [mm] \not\in [/mm] N genau |N| Elemente, die mit g zusammenfallen, oder könnte es sein, dass für ein g 1,5*|N| Elemente zusammen fallen, für ein anderes g' dafür nur 0,5*|N| Elemente?

Bezug
                        
Bezug
#Elem. in Faktorgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Do 08.01.2009
Autor: felixf

Hallo

> Okay - viel Dank schonmal für die Antwort! Das leuchtet mir
> jetzt ein :-)
>  
> Eine Frage allerdings noch, die sich gerade auf das
> bezieht, was du geschrieben hast - vielleicht weißt du das
> ja auch:
>  Sind es für jedes g [mm]\in[/mm] G : g [mm]\not\in[/mm] N genau |N|
> Elemente, die mit g zusammenfallen, oder könnte es sein,
> dass für ein g 1,5*|N| Elemente zusammen fallen, für ein
> anderes g' dafür nur 0,5*|N| Elemente?

Nein, es sind immer genau $|N|$ Elemente. Das zeigst du wie folgt:

1) es gilt $N g = N h$ genau dann, wenn $h = n g$ ist fuer ein $n [mm] \in [/mm] N$;
2) die Nebenklasse $N g = [mm] \{ n g \mid n \in N \}$ [/mm] hat genau $|N|$ Elemente, da die Abbildung $N [mm] \to [/mm] N g$, $n [mm] \mapsto [/mm] n g$ eine Bijektion ist.

LG Felix


Bezug
                                
Bezug
#Elem. in Faktorgruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:04 So 11.01.2009
Autor: JustSmile

Danke :)
Gute und kurze Erklärung!
lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]