matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikElektrostatische Felder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Elektrostatische Felder
Elektrostatische Felder < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elektrostatische Felder: Gewitterberechnung
Status: (Frage) beantwortet Status 
Datum: 18:59 Di 27.01.2009
Autor: Zeitlos

Aufgabe
Das Gewitter

Die Spannung einer Gewitterwolke in etwa 3km Höhe beträgt gegen den Erdboden rund 30 Mio. Volt. Die Feldstärke von ca [mm] 10^4 [/mm] V/m reicht für die Ionisierung der Luft noch nicht aus. Wegen der Turbulenz der Luftmassen ist die Ladungsverteilung an der negativen Unterseite der Wolke nicht gleichmäßig, so dass lokal Feldstärken von [mm] 10^7 [/mm] V/m erreicht werden. Es kommt zu einem Blitzüberschlag zwischen Wolkenteilen oder zum Erdboden.

-> Zeige, dass bei diesen Feldstärken die Flächenladung rund 10^-4 C/m² beträgt. Wenn ein Blitz die Ladung einer Wolkenfläche von rund [mm] 10^5 [/mm] m² in etwa 1ms abführt, wie groß sind die abgeführte Ladung und Stromstärke ?


Also, ich weiß nicht einmal wie ich da anfangen könnt.
Keine meiner Formeln passt... und ich hab mich echt schon bemüht.

Verzweiflung...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Elektrostatische Felder: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Di 27.01.2009
Autor: leduart

Hallo Zeitlos und
          
          [willkommenvh]


eigentlich musst du wissen wie Die ladungsdichte und Feldstaerke direkt an der Oberflaeche einer geladen Flaeche ist? Wenn nicht allgemein, dann vielleicht im Plattenkondensator? das kannst du verallgemeinern (nur nahe an der Flaeche)
Wenn du dann die ladung pro [mm] m^2 [/mm] hast, kannst du wohl den Strom ausrechnen, wenn die in 1 ns von der gegebenen Flaeche wegfliesst.!
Gruss leduart

Bezug
                
Bezug
Elektrostatische Felder: Buchlösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:16 Di 27.01.2009
Autor: Zeitlos

Ja es gibt eine für mich vollkommen absurde Lösung die lautet:

Q/A = [mm] E/\varepsilon0 [/mm] = [mm] 10^7 [/mm] * 8,85*10^-12 * 1 C/m²
=8,85*10^-5 C/m²

Q= 8,85*10^-5 * 10^-5 C [mm] \sim [/mm] 10C => I=10^4A

damit kann ich leider nix anfangen, weil ich die Proportionalität am Anfang nicht nachvollziehn kann - außerdem stimmt diese in meinen Augen auch nicht mit dem Rechenvorgang überein ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]