matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikElektrisches Dipol
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Elektrisches Dipol
Elektrisches Dipol < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elektrisches Dipol: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 So 20.03.2011
Autor: kushkush

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Zwei elektronische Dipole mit den Dipolmomenten $\overrightarrow{p_{1}}$(Winkel $\alpha_{1}$ zur Horizontalen) und $\overrightarrow{p_{2}}$ ( Winkel $\alpha_{2}$ zur Horizontalen) sind in einer Ebene angeordnet. Ihr Abstand beträgt z. (Es soll die Näherung benutzt werden, dass z gross gegenüber den linearen Abmessungen der Dipole ist.)

a) Wie gross ist die Energie des Systems?

b) Wie würden sich die Dipole zueinander einstellen, wenn sie in der Ebene frei drehbar wären? Wie gross wäre dann die Gesamtenergie?


Hallo,

Die Dipolmomente ist definiert durch: $\overrightarrow{p}=q\overrightarrow{d}$

Das Potential beträgt: $\phi_{1}(\overrightarrow{r})=\frac{1}{4\pi \epsilon_{0}} (\frac{q_{1}}{|\overrightarrow{r}-\frac{\overrightarrow{d}}{2}|}- \frac{q_{1}}{|\overrightarrow{r}+\frac{\overrightarrow{d}}{2}})$


Jetzt eine falsche?? Taylorentwicklung, da gefordert wird, dass z >> r ist und nicht r >> z? : $\frac{1}{|\overrightarrow{r}\pm \frac{\overrightarrow{d}}{2}|}= \frac{1}{r}\frac{1}{\sqrt{1\pm \frac{rd_{1}}{r^{2}}+\frac{d_{1}^{2}}{4r^{2}}}}=\frac{1}{r}(1\pm \frac{1}{2}\frac{r\overrightarrow{d}}{r^{2}})$


Also folgt für das Potential: $\phi(\overrightarrow{r})=\frac{q_{1}}{4\pi \epsilon_(0}}\frac{\overrightarrow{d}\overrightarrow{r}}{r^{3}}$

Also ist $\phi_{2}(\overrightarrow{r})=\frac{q_{1}}{4\pi \epsilon_{0}}$

$E(z)=-grad(\phi_{z}(r))=-(-2\frac{q_{1}}{4\pi \epsilon_{0}}\frac{d_{1}}{z^{3}} =\frac{q_{1}}{2\pi \epsilon_{0}}\frac{d_{1}}{z^{3}}$

$F_{2}=\overrightarrow{p}_{2}\cdot grad(E(z))=p_{2}\frac{-3}{2}\frac{q_{1}}{\pi \epsilon_{0}}\frac{d_{1}}{z^{4}}$

Was ist mit Energie des Systems gemeint und wie berechne ich die?


b) Die Dipole richten sich in Richtung des elektrischen Feldes aus.
Ansatz zur Berechnung der Gesamtenergie:
$W=\integral_{z}^{\infty}F_{z}(z')dz' $

Stimmt wohl nicht! Wie mache ich das richtig?


Ich habe diese Fragen in keinem anderen Forum gestellt.

Danke und Gruss

kushkush

        
Bezug
Elektrisches Dipol: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Di 22.03.2011
Autor: rainerS

Hallo!

> Zwei elektronische Dipole mit den Dipolmomenten
> [mm]\overrightarrow{p_{1}}[/mm](Winkel [mm]\alpha_{1}[/mm] zur Horizontalen)
> und [mm]\overrightarrow{p_{2}}[/mm] ( Winkel [mm]\alpha_{2}[/mm] zur
> Horizontalen) sind in einer Ebene angeordnet. Ihr Abstand
> beträgt z. (Es soll die Näherung benutzt werden, dass z
> gross gegenüber den linearen Abmessungen der Dipole ist.)
>  
> a) Wie gross ist die Energie des Systems?
>  
> b) Wie würden sich die Dipole zueinander einstellen, wenn
> sie in der Ebene frei drehbar wären? Wie gross wäre dann
> die Gesamtenergie?
>  
> Hallo,
>  
> Die Dipolmomente ist definiert durch:
> [mm]\overrightarrow{p}=q\overrightarrow{d}[/mm]
>  
> Das Potential beträgt:
> [mm]\phi_{1}(\overrightarrow{r})=\frac{1}{4\pi \epsilon_{0}} (\frac{q_{1}}{|\overrightarrow{r}-\frac{\overrightarrow{d}}{2}|}- \frac{q_{1}}{|\overrightarrow{r}+\frac{\overrightarrow{d}}{2}})[/mm]

Aber nur, wenn sich der Dipol im Ursprung befindet.

>  
>
> Jetzt eine falsche?? Taylorentwicklung, da gefordert wird,
> dass z >> r ist und nicht r >> z? :
> [mm]\frac{1}{|\overrightarrow{r}\pm \frac{\overrightarrow{d}}{2}|}= \frac{1}{r}\frac{1}{\sqrt{1\pm \frac{rd_{1}}{r^{2}}+\frac{d_{1}^{2}}{4r^{2}}}}=\frac{1}{r}(1\pm \frac{1}{2}\frac{r\overrightarrow{d}}{r^{2}})[/mm]
>  
>
> Also folgt für das Potential:
> [mm]\phi(\overrightarrow{r})=\frac{q_{1}}{4\pi \epsilon_{0}}\frac{\overrightarrow{d}\overrightarrow{r}}{r^{3}}[/mm]

Gegeben ist das Dipolmoment, nicht der Abstand, also steht da

[mm] \phi(\vec{r})=\frac{1}{4\pi \epsilon_{0}}\frac{\vec{p}_1\vec{r}}{r^{3}}[/mm]


>  
> Also ist [mm]\phi_{2}(\overrightarrow{r})=\frac{q_{1}}{4\pi \epsilon_{0}}[/mm]

Was soll das sein?

> [mm]E(z)=-grad(\phi_{z}(r))=-(-2\frac{q_{1}}{4\pi \epsilon_{0}}\frac{d_{1}}{z^{3}} =\frac{q_{1}}{2\pi \epsilon_{0}}\frac{d_{1}}{z^{3}}[/mm]

Die elektrische Feldstärke ist ein Vektor, kein Skalar. Wo kommt plötzlich das z her?

Also ist das Feld des ersten Dipols

  [mm]\vec{E} = -\vec\nabla \phi(\vec{r}) = - \frac{1}{4\pi \epsilon_{0}} \left(\frac{\vec{p}_1}{r^3} - 3 (\vec{p}_1*\vec{r}) \frac{\vec{r}}{r^5} \right) [/mm]

>  
> [mm]F_{2}=\overrightarrow{p}_{2}\cdot grad(E(z))=p_{2}\frac{-3}{2}\frac{q_{1}}{\pi \epsilon_{0}}\frac{d_{1}}{z^{4}}[/mm]
>  

Die Kraft auf den zweiten Dipol (am Ort [mm] $\vec{r}$) [/mm] ist in der Tat

[mm] \vec{F}_2 = (\vec{p}_2*\vec{\nabla}) \vec{E}(\vec{r}) [/mm] ,

und mit deinen Bezeichnungen ist [mm] $z=|\vec{r}|$. [/mm] Dann setzt du die in der Aufgabe gegebenen Winkel ein.

> Was ist mit Energie des Systems gemeint und wie berechne
> ich die?

Wie immer: du integrierst die Kraft entlang eines Weges. Als Nullpunkt nimmst du den Fall [mm] $z=|\vec{r}|\to \infty$. [/mm]

>
>
> b) Die Dipole richten sich in Richtung des elektrischen
> Feldes aus.

Welchen elektrischen Feldes? Hier gibt es nur die beiden Dipole.

Die Dipole richten sich so aus, dass die Gesamtenergie minimal wird.

Viele Grüße
   Rainer


Bezug
                
Bezug
Elektrisches Dipol: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:25 Mi 23.03.2011
Autor: kushkush

Hallo!

> Wie immer

a)

[mm] z:=|\vec{r}| [/mm]

[mm] $\integral_{\infty }^{z}\vec{F}_{2} [/mm] dz= [mm] \integral_{ \infty }^{z} p_{2}\frac{-3}{2}\frac{q_{1}}{\pi \epsilon_{0}}\frac{d_{1}}{z^{4}} [/mm] dz = [mm] \Bigg|_{\infty}^{z} \frac{p_{2}q_{1}d_{1}}{2\pi \epsilon_{0} z^{3}}=\frac{p_{2}q_{1}d_{1}}{2\pi \epsilon_{0} z^{4}} [/mm] - 0 = [mm] \frac{p_{2}q_{1}d_{1}}{2\pi \epsilon_{0} z^{4}}= \frac{p_{2}q_{1}d_{1}}{2\pi \epsilon_{0} |\vec{r}|^{4}} [/mm] $

stimmt das?

b) Muss ich da zusätzlich zu a noch die Arbeit fürs Drehen berechnen. Ich weiss ja nicht ob sie sich gleich viel drehen müssen??



> Viele Grüsse


Danke

Gruss

kushkush

Bezug
                        
Bezug
Elektrisches Dipol: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Mi 23.03.2011
Autor: rainerS

Hallo!

> [mm]z:=|\vec{r}|[/mm]
>  
> [mm]\integral_{\infty }^{z}\vec{F}_{2} dz= \integral_{ \infty }^{z} p_{2}\frac{-3}{2}\frac{q_{1}}{\pi \epsilon_{0}}\frac{d_{1}}{z^{4}} dz = \Bigg|_{\infty}^{z} \frac{p_{2}q_{1}d_{1}}{2\pi \epsilon_{0} z^{3}}=\frac{p_{2}q_{1}d_{1}}{2\pi \epsilon_{0} z^{4}} - 0 = \frac{p_{2}q_{1}d_{1}}{2\pi \epsilon_{0} z^{4}}= \frac{p_{2}q_{1}d_{1}}{2\pi \epsilon_{0} |\vec{r}|^{4}}[/mm]
>  
> stimmt das?

Nein. Ich hatte dich darum hingewiesen, dass du die Feldstärke falsch berechnet hast. Rechne erst einmal die Kraft (Vektor!) richtig aus.

> b) Muss ich da zusätzlich zu a noch die Arbeit fürs
> Drehen berechnen.

Nein, hier werden die Dipole als masselos und mit Trägheitsmoment 0 betrachtet.

Viele Grüße
   Rainer


Bezug
                                
Bezug
Elektrisches Dipol: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:23 Do 24.03.2011
Autor: kushkush

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!



$\vec{r}$ kann ich folgendermassen darstellen:

$|r|= \sqrt{x^{2}+y^{2}$

$x=|r|cos(\phi), y=|r|sin(\phi)$


$\vec{p}$ weiss ich nicht wie ich das einsetzen soll! Der Betrag ist die Länge eines Dipols und der Winkel ist der Abstand von der horizontalen (?).


Also wäre

$|p_{2}|=d_{2}$ und $x=d_{2}cos(\alpha_{2}), y=d_{2}sin(\alpha_{2}), z=0$

$|p_{1}|=d_{1}$ und $x=d_{1}cos(\alpha_{2}), y=d_{1}sin(\alpha_{1}), z=0$

$ \vec{F}_2 = (\vec{p}_2\cdot{}\vec{\nabla}) \vec{E}(\vec{r}) =  (\vektor{d_{2}cos(\alpha_{2})\\d_{2}sin(\alpha_{2})\\0} \vektor{\frac{d}{dx} \\ \frac{d}{dy} \\ \frac{d}{dz}}) (\frac{\vektor{d_{1}cos(\alpha_{1})\\d_{1}sin(\alpha_{1})\\0}}{(x^{2}+y^{2})^{3/2}}- \frac{3(d_{1}rcos(\alpha)cos(\phi)+d_{1}rsin(\alpha)sin(\phi))(\vektor{rcos(\phi) \\ rsin(\phi) \\ 0 }) }{(x^{2}+y^{2})^{5/2}})})= (\frac{d}{dx}d_{2}cos(\alpha_{2})+ \frac{d}{dy}d_{2}sin(\alpha_{2}))(\frac{\vektor{d_{1}cos(\alpha_{1})\\ d_{1}sin(\alpha_{1}) \\ 0}}{(x^{2}+y^{2})^{3/2}}) - (\frac{d}{dx}d_{2}cos(\alpha_{2})+ \frac{d}{dy}d_{2}sin(\alpha_{2})) (\frac{\vektor{3d_{1}r^{2}(cos(\alpha_{1}cos^{2}(\phi)+sin(\alpha_{1})sin(\phi))\\ 3d_{1}r^{2}(cos(\alpha_{1})cos(\phi)+sin(\alpha)sin^{2}(\phi))\\ 0}}{(x^{2}+y^{2})^{5/2}})$

=

$\vektor{\frac{-3xd_{1}d_{2}cos(\alpha_{1})cos(\alpha_{2})}{(x^{2}+y^{2})^{5/2)} \\ \frac{-3xd_{1}^{2}cos(\alpha_{2})sin(\alpha_{1})}{(x^{2}+y^{2})^{5/2}}\\ 0}$
+
$\vektor{\frac{-3yd_{1}d_{2}cos(\alpha_{1})cos(\alpha_{2})}{(x^{2}+y^{2})^{5/2)} \\ \frac{-3yd_{1}^{2}cos(\alpha_{2})sin(\alpha_{1})}{(x^{2}+y^{2})^{5/2}}\\ 0}$

-

$\vektor{
-\frac{9xd_{1}d_{2}cos(a_{2})(cos(a_{1}cos^{2}(\phi)+sin(a_{1}sin(\phi))}{(x^{2}+y^{2})^{5/2}}
\\

-\frac{9xd_{1}d_{2}sin(a_{2})(sin(a_{1}sin^{2}(\phi)+cos(a_{1}cos(\phi))}{(x^{2}+y^{2})^{5/2}} \\ 0}$


-

$\vektor{
-\frac{9yd_{1}d_{2}cos(a_{2})(cos(a_{1}cos^{2}(\phi)+sin(a_{1}sin(\phi))}{(x^{2}+y^{2})^{5/2}}
\\

-\frac{9yd_{1}d_{2}sin(a_{2})(sin(a_{1}sin^{2}(\phi)+cos(a_{1}cos(\phi))}{(x^{2}+y^{2})^{5/2}} \\ 0}$





Das stimmt wohl nicht!


> Viele Grüsse

Danke


Gruss

kushkush





Bezug
                                        
Bezug
Elektrisches Dipol: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:29 Fr 25.03.2011
Autor: kushkush

Hallo,


[mm] $W=\frac{\vec{p_{1}\cdot \vec{p_{2}}-3(\vec{p_{1}}\cdot \vec{r})(\vec{p_{2}}\cdot \vec{r})}}{4\pi \epsilon_{0} r^{3}}$ [/mm]

und

damit wäre für den Fall dass sie parallel wären und die Gesamtenergie minimal : [mm] $W=\frac{-p_{1}p_{2}}{2\pi \epsilon_{0} r^{3}} [/mm] $


Stimmt das so?


Danke!


Gruss

kushkush

Bezug
                                                
Bezug
Elektrisches Dipol: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Fr 25.03.2011
Autor: rainerS

Hallo!

> [mm]W=\frac{\vec{p}_{1}\cdot \vec{p}_{2}-3(\vec{p}_{1}\cdot \vec{r})(\vec{p}_{2}\cdot \vec{r})}{4\pi \epsilon_{0} r^{3}}[/mm]

Nein, das ist schon aus Dimensionsgründen falsch: der zweite Summand hat eine andere Dimension als der erste. Es wäre richtig, wenn du im Zähler [mm] $\vec{r}$ [/mm] durch den Einheitsvektor in Richtung von [mm] $\vec{r}$, [/mm] also durch [mm] $\bruch{\vec{r}}{r}$ [/mm] ersetzt.

(Der Gradient dieses Ausdrucks ergibt die Kraft, die ich in meinem letzten Post vorgerechnet habe.)

> und
>
> damit wäre für den Fall dass sie parallel wären und die
> Gesamtenergie minimal : [mm]W=\frac{-p_{1}p_{2}}{2\pi \epsilon_{0} r^{3}}[/mm]

Da ist nicht ganz richtig: Es spielen insgesamt drei Winkel eine Rolle: der zwischen den beiden Dipolen und jeweils der zwischen dem Vektor des Dipolmoments und dem Vektor zwischen den beiden Dipolen.

Die Winkel zwischen [mm] $\vec{p}_1$ [/mm] bzw. [mm] $\vec{p}_2$ [/mm] und [mm] $\vec{r}$ [/mm] sind [mm] $\alpha_1$ [/mm] und [mm] $\pi-\alpha_2$. [/mm] Wie groß ist der Winkel zwischen [mm] $\vec{p}_1$ [/mm] und [mm] $\vec{p}_2$ [/mm] ?

Viele Grüße
   Rainer

Bezug
                                        
Bezug
Elektrisches Dipol: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Fr 25.03.2011
Autor: rainerS

Hallo!

> Hallo!
>  
>
>
> [mm]\vec{r}[/mm] kann ich folgendermassen darstellen:
>
> [mm]|r|= \sqrt{x^{2}+y^{2}[/mm]
>  
> [mm]x=|r|cos(\phi), y=|r|sin(\phi)[/mm]
>  
>
> [mm]\vec{p}[/mm] weiss ich nicht wie ich das einsetzen soll! Der
> Betrag ist die Länge eines Dipols und der Winkel ist der
> Abstand von der horizontalen (?).
>
>
> Also wäre

>

> [...]

Es ist sehr umständlich, am Anfang die Komponenten einzusetzen. Einfacher ist es, erst einmal mit Vektoren zu rechnen.

Es ist ja

[mm] (\vec{v}*\vec{\nabla}) \vec{r} = \vec{v} [/mm]

für jeden konstanten Vektor [mm] $\vec{v}$ [/mm] und daher

[mm] \vec{F}_2 = (\vec{p}_2\cdot{}\vec{\nabla}) \vec{E}(\vec{r}) = -\bruch{1}{4\pi\varepsilon_0}\left( \vec{p}_1(\vec{p}_2* \vec{\nabla} \bruch{1}{r^3} )- 3 (\vec{p}_1*\vec{p}_2) \bruch{\vec{r}}{r^5} - 3 (\vec{p}_1*\vec{r}) \vec{p}_2* \vec\nabla \bruch{\vec{r}}{r^5} \right) [/mm]

[mm] = -\bruch{1}{4\pi\varepsilon_0} \left(\vec{p}_1(\vec{p}_2 *\bruch{-3\vec{r}}{r^5}) - 3 (\vec{p}_1*\vec{p}_2) \bruch{\vec{r}}{r^5} - 3 (\vec{p}_1*\vec{r}) \bruch{\vec{p}_2}{r^5} +15 (\vec{p}_1*\vec{r}) (\vec{p}_2*\vec{r}) \bruch{\vec{r}}{r^7}\right) [/mm]

  [mm] = \bruch{3}{4\pi\varepsilon_0} \left( \bruch{(\vec{p}_1*\vec{r}) \vec{p}_2 + (\vec{p}_2*\vec{r})\vec{p}_1 + (\vec{p}_1*\vec{p}_2) \vec{r}}{r^5} -5 (\vec{p}_1*\vec{r}) (\vec{p}_2*\vec{r}) \bruch{\vec{r}}{r^7} \right) [/mm]

[mm] $\vec{r}$ [/mm] ist der Vektor vom Ort von [mm] $\vec{p}_1$ [/mm] zum Ort von [mm] $\vec{p}_2$, [/mm] daher ist [mm] $z=\vec{r}$. [/mm]  Die Skalarprodukte kannst du direkt durch die beiden gegebenen Winkel ausdrücken.

Viele Grüße
   Rainer

Viele Grüße
   Rainer

Bezug
                                                
Bezug
Elektrisches Dipol: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:15 So 27.03.2011
Autor: kushkush

Hallo!

> Rechnung

Danke!



Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]