matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseElastizität + Umkehrregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Induktionsbeweise" - Elastizität + Umkehrregel
Elastizität + Umkehrregel < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elastizität + Umkehrregel: eine teilaufgabe
Status: (Frage) für Interessierte Status 
Datum: 21:23 Di 07.06.2011
Autor: sensai1

Aufgabe
Aufgabe:
Wir bezeichnen die Elastizität einer Funktion h an einer Stelle a ihrer Argumentmenge mit E(h,a). Beweisen Sie die folgenden Regeln und geben Sie die genauen Voraussetzungen an, die über die auftretenden Funktionen h,h1,h2 zu machen sind.

a)E(h1,a)+E(h2,a)=E(h1⋅h2,a) Produktregel
b)E(h,a)=−E(1/h,a) Inversenregel
c)E(h^−1,h(a))=1/(E(h,a)) Umkehrregel

Hallo erstmal,
Aufgabe a) und b) sind bereits gelöst (vorallem durch die große Hilfe von Fred).
Ich benötige nur nocheinmal hilfe für die Vorraussetzungen und Aufgabe c).

Hier was ich bisher überlegt habe:
Ich dachte mir das ich mit der Def. der Elastizität

E= f'(x)*(x/f(x)) ersteinmal beide Seiten des Gleichheitszeichen ausrechne, bin aber nicht zum Ende gekommen.

E(h^-1,h(a))=E(1/h,h(a))= ((1/h)'(a)*h(a))/(1/(h(h(a)))  
Danach könnte man noch das h(h(a)) nach oben bringen, aber ich bin mir nicht sicher ob h(h(a)) überhaupt richtig ist.

1/E(h,a)= 1/(h'(a)*a)/h(a)=h(a)/(h'(a)*a
Nun weiss ich allerdings nicht weiter weil ich von keiner der beiden Seiten auf die andere komme...

Bei den Voraussetzungen bin ich leider ebenfalls überfragt und habe auch nicht wirklich eine Idee, wie diese herauszufinden sind.

Vielen Dank falls sich jemand findet der sich bereiterklärt mir zu helfen.
Benötige das ganze bis morgen früh um 10h, deshalb habe ich auch ein weiteres Thema eröffnet, wie weiter unten auch noch geschildert.




Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:http://www.matheforum.net/read?i=800432,
aber das ist schon mehr als 4h her, dass ich eine Antwort bekommen habe, also habe ich weil ich ja laut Regeln keine Antwort mehr zu erwarten habe, ein neues Thema eröffnet.

        
Bezug
Elastizität + Umkehrregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:30 Di 07.06.2011
Autor: schachuzipus

Hallo,

bitte keine Doppelposts fabrizieren, du hast bereits eine identische Frage gestellt.

Mache im anderen thread weiter, ich schließe diesen hier!

Gruß

schachuzipus


Bezug
                
Bezug
Elastizität + Umkehrregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Di 07.06.2011
Autor: sensai1

ist es nicht so, dass man nach 4 stunden keine antwort mehr zu erwarten hat?
meine sowas in den regeln gelesen zu haben....

Bezug
                        
Bezug
Elastizität + Umkehrregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Di 07.06.2011
Autor: schachuzipus

Hallo nochmal,


> ist es nicht so, dass man nach 4 stunden keine antwort mehr
> zu erwarten hat?
>  meine sowas in den regeln gelesen zu haben....

Dann wäre das Forum aber schnell zugespamt ...

Kopiere einfach deinen Text hier aus der Ursprungsfrage und füge es im alten thread (als neue Frage) ein, dann rutsch dieser doch automatisch nach oben.

Du kannst durch eine zusätzliche Mitteilung/Frage einen Artikel nach oben pushen, wenn es denn nötig sein sollte.

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]