matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMapleEinschränkung: Reelle Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maple" - Einschränkung: Reelle Zahlen
Einschränkung: Reelle Zahlen < Maple < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maple"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einschränkung: Reelle Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:12 Mi 03.01.2007
Autor: fidionael

Wieso wird mir trotz der Einschränkung assume(x,real) bei [mm] solve(x^3+x^2+x=0,x) [/mm] als Lösungsmöglichkeiten komplexe Zahlen angegeben, bzw. wie kann ich das verhindern?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Einschränkung: Reelle Zahlen: Zusätzliche Angaben
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:01 Mi 03.01.2007
Autor: fidionael

Meine Eingaben in Maple mit Ausgabe zur Verdeutlichung:

[mm] f:=x->x^3+x^2+x: [/mm]
assume(x,real);solve(f(x)=0,x)
[mm]0,-\bruch{1}{2}+\bruch{1}{2}*I*\wurzel{3},-\bruch{1}{2}-\bruch{1}{2}*I*\wurzel{3}[/mm]
coulditbe(x=I)
false
[mm]coulditbe(x=I*\wurzel{3}[/mm])
true

Bezug
        
Bezug
Einschränkung: Reelle Zahlen: benutze RealDomain
Status: (Antwort) fertig Status 
Datum: 08:20 Mo 08.01.2007
Autor: Peter_Pein

Hallo,

assume(x,real); bewirkt lediglich, dass bei der Bearbeitung von Ausdrücken, die x enthalten, z.B. [mm] $\sqrt{x^2}$ [/mm] in $|x|$ vereinfacht wird. Ich vermute, dass beim Lösen von Polynomen ausschließlich die Koeffizienten betrachtet werden.

1:
2: > use RealDomain in solve(x^3+x^2+x) end;
3:
4:                                   0
5: # oder
6:
7: > with(RealDomain):
8: > solve(x^3+x^2+x);
9:
10:                                   0
11:
12: # und jetzt kann man das "übliche" solve so bekommen:
13:
14: > lprint(:-solve(x^3+x^2+x));
15: 0, -1/2+1/2*I*3^(1/2), -1/2-1/2*I*3^(1/2)


das "lprint" habe ich nur wegen der lesbareren Ausgabe (nach copy-paste) benutzt.

Ich hoffe, das hilft ein wenig,
Peter


Bezug
        
Bezug
Einschränkung: Reelle Zahlen: Einfach anderer Befehl
Status: (Antwort) fertig Status 
Datum: 20:42 Di 23.01.2007
Autor: Canard_Sauvage

Nimm anstellen von solve einfach fsolve, damit wird die Aufgabe nurnoch numerisch gelöst, bekommst also keine Komplexen Zahlen mehr, nurnoch reale ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maple"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]