matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Einige Fragen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Einige Fragen
Einige Fragen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einige Fragen: Quadratische Funktionen
Status: (Frage) beantwortet Status 
Datum: 13:35 Di 20.05.2008
Autor: drahmas

Aufgabe
[mm] y=-0,5x^2+x+3,5 [/mm]  

Hallo,

kann mir bitte mal schnell jemand erklären wie man die Nullstellen einer quadratischen Funktion berechnet?

Dann würd ich noch gern wissen wie ich denKoeffizienten von [mm] x^2 [/mm] verändern muss, so dass  der Scheitel der Parabel der tiefste Punkt des Graphen ist. Muss man da nur das Vorzeichen ändern oder versteh ich da was falsch? Die Parabel müsste ja dafür nach unten offen sein, oder?

Danke und beste Grüße ...

        
Bezug
Einige Fragen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Di 20.05.2008
Autor: Achilles

Hallo dramas,

Also du berechnest die mit der pq-Formel:
x1,x2 = [mm] -\bruch{p}{2}\pm\wurzel{(\bruch{p}{2})^{2}-q} [/mm]
In deinem Fall musst du erstmal die -0,5 vor dem [mm] x^{2} [/mm] wegbekommen also nimmst du den Term erstmal mit -2 mal.
Dann steht da bei dir
[mm] y=x^{2}+2x+7 [/mm]
die +2 ist dein p und die +7 ist dein q
wenn die wurzel negativ werden sollte so gibt es keine nullstelle und wenn die wurzel null ist so hast du nur eine nullstelle.
Hoffe ich konnte dir helfen.

Bezug
                
Bezug
Einige Fragen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 15:01 Di 20.05.2008
Autor: Tyskie84

hi achilles,

es hat sich ein kl. Fehler eingeschliechen. Richtig muss es heissen:
[mm] \\x^{2}-2x-7=0. [/mm] Diese Funktion besitzt nun auch Nullstellen in [mm] \IR. [/mm]

So wie du deine Funktkion aufgeschrieben hast da ex. nur Nullstellen in [mm] \IC. [/mm]

[hut] Gruß

Bezug
        
Bezug
Einige Fragen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Di 20.05.2008
Autor: drahmas

Okay danke, prima.
Hat soweit funktioniert.

Nur zu meiner zweiten Frage brauche ich noch eine Antwort :) ...

Bezug
                
Bezug
Einige Fragen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Di 20.05.2008
Autor: Tyskie84

Hi,

Du hast [mm] y=-0,5x^{2}+x+3,5. [/mm] Diese Parabel ist nach unten geöffnet und somit ist der Scheitelpunkt der höchste Punkt der Parabel. Wie du schon sagtest musst du erreichen dass die Parabel nach oben geöffnet ist. Und das errechst du indem du die Gleichung mit [mm] \\-1 [/mm] multiplizierst, allerdings steht dann [mm] \\-y=0,5x^{2}-x-3,5. [/mm] Wie lautet denn die konkrete Aufgabenstellung?

[hut] Gruß

Bezug
                        
Bezug
Einige Fragen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Di 20.05.2008
Autor: drahmas

Hi,

die Aufgabenstellung bezieht sich auf die o.g. Gleichung und lautet:

„Wie muss der Koeffizient von x² verändert werden, damit der Scheitel der Parabel der tiefste Punkt des Graphen ist? geben Sie ein beliebiges Beispiel an!“

Gruß

Bezug
                                
Bezug
Einige Fragen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Di 20.05.2008
Autor: Tyskie84

Hi,

dann ist es so wie du sagtest. Die Parabel muss nach oben geöffnet sein damit der Scheitel der tiefste Punkte des Graphen ist. Also die Funktion mit [mm] \\-1 [/mm] multiplizieren.

[hut] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]