matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenEinheitsvektor
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Einheitsvektor
Einheitsvektor < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitsvektor: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 15:11 Mi 08.04.2009
Autor: jojo1484

Aufgabe
Bestimmen Sie zu den Vektoren [mm] \vec{a_{i}} [/mm] den zugehörigen normierten Einheitsvektor [mm] \vec{e_{i}} [/mm] =  [mm] \bruch{1}{|\vec{a_{i}}|} \vec{a_{i}} [/mm] :

a) [mm] \vec{a_{1}} [/mm] = [mm] \vektor{5 \\ 0 \\ 0} [/mm]

b) [mm] \vec{a_{2}} [/mm] = [mm] \vektor{-2 \\ -2 \\ -2} [/mm]

c) [mm] \vec{a_{3}} [/mm] = [mm] \vektor{a \\ a \\ 0} [/mm]

d) [mm] \vec{a_{4}} [/mm] = [mm] \vektor{\bruch{1}{\wurzel[n]{3}} \\ \bruch{1}{\wurzel[n]{3}} \\ \bruch{1}{\wurzel[n]{3}}} [/mm]

Die Ergebnisse hierzu sind wohl folgende:

a) [mm] \vec{e_{1}} [/mm] = [mm] \vektor{1 \\ 0 \\ 0} [/mm]

b) [mm] \vec{e_{2}} [/mm] = [mm] \vektor{-1 \\ -1 \\ -1} [/mm]

c) [mm] \vec{e_{3}} [/mm] = [mm] \vektor{1 \\ 1 \\ 0} [/mm]

d) [mm] \vec{e_{4}} [/mm] = [mm] \vec{a_{4}} [/mm]

Aber kann mir bitte jemand kurz erklären wie ich zu diesen Vektoren komme und was der Einheitsvektor genau zu sagen hat? Ich wäre euch sehr dankbar.

Vielen Dank.

Grüße Jojo1484

        
Bezug
Einheitsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Mi 08.04.2009
Autor: Kroni

Hi,

ein Einheitsvektor zeichnet sich dadurch aus, dass er in die selbe Richtung wie dein Vektor [mm] $\vec{a_i}$ [/mm] zeigt, allerdings die Länge 1 hat. D.h. wenn man [mm] $|\vec{a}|$ [/mm] berechnet, kommt 1 heraus.

Die Rechenanweisung steht da ja eigentlich auch schon: [mm] $\vec{e_i}=\frac{1}{|\vec{a_i}|}\vec{a_i}$, [/mm] was heißt, dass der Einheitsvektor ein Vielfaches von deinem Vektor [mm] $\vec{a_i}$ [/mm] ist, also in die selbe Richtung zeigt, aber die Länge 1 hat.

> Bestimmen Sie zu den Vektoren [mm]\vec{a_{i}}[/mm] den zugehörigen
> normierten Einheitsvektor [mm]\vec{e_{i}}[/mm] =  
> [mm]\bruch{1}{|\vec{a_{i}}|} \vec{a_{i}}[/mm] :
>  
> a) [mm]\vec{a_{1}}[/mm] = [mm]\vektor{5 \\ 0 \\ 0}[/mm]
>  
> b) [mm]\vec{a_{2}}[/mm] = [mm]\vektor{-2 \\ -2 \\ -2}[/mm]
>  
> c) [mm]\vec{a_{3}}[/mm] = [mm]\vektor{a \\ a \\ 0}[/mm]
>  
> d) [mm]\vec{a_{4}}[/mm] = [mm]\vektor{\bruch{1}{\wurzel[n]{3}} \\ \bruch{1}{\wurzel[n]{3}} \\ \bruch{1}{\wurzel[n]{3}}}[/mm]
>  
> Die Ergebnisse hierzu sind wohl folgende:
>
> a) [mm]\vec{e_{1}}[/mm] = [mm]\vektor{1 \\ 0 \\ 0}[/mm]

Das passt, kann man ja auch sofort nachrechnen.

>  
> b) [mm]\vec{e_{2}}[/mm] = [mm]\vektor{-1 \\ -1 \\ -1}[/mm]

Die Zeigen zwar in die selbe Richtung, die Länge ist aber nicht 1: [mm] $|\vec{e_2}|=\sqrt{1^2+1^2+1^2}=\sqrt{3}\not=1$, [/mm] das passt nicht.

>  
> c) [mm]\vec{e_{3}}[/mm] = [mm]\vektor{1 \\ 1 \\ 0}[/mm]

Auch hier passt die Länge nicht.

>  
> d) [mm]\vec{e_{4}}[/mm] = [mm]\vec{a_{4}}[/mm]
>  
> Aber kann mir bitte jemand kurz erklären wie ich zu diesen
> Vektoren komme und was der Einheitsvektor genau zu sagen
> hat? Ich wäre euch sehr dankbar.


Also, nimm dir am besten nochmal alle Vektoren vor. Rechne den Betrag des Vektors aus, der ja so definiert ist: [mm] $\left|\pmat{a\\b\\c}\right|=\sqrt{a^2+b^2+c^2}$. [/mm] Wenn du den hast, nimmst du dir wieder den Vektor [mm] $\vec{a_i}$ [/mm] her, und teilst durch seine Länge. Dann hast du den Einheitsvektor von [mm] $\vec{a_i}$ [/mm] raus.

LG

Kroni

>  
> Vielen Dank.
>  
> Grüße Jojo1484


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]