matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenEinheitsmatrix  / Elementarm.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Abbildungen und Matrizen" - Einheitsmatrix / Elementarm.
Einheitsmatrix / Elementarm. < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitsmatrix / Elementarm.: "Elementarmatrix"
Status: (Frage) beantwortet Status 
Datum: 17:02 So 27.04.2014
Autor: fischerM

Aufgabe
Gib für eine 2x2 Matrix  für die 3 Typen elementarer Zeilenumformungen alle möglichen Elementarmatrizen an -> Der Skalar ist mit Lambda zu bezeichnen

Eine Matrix E entsteht ja aus der Einheitsmatrix In durch eine einzige Elementare Zeilenumformung ... das wäre dann die Elementarmatrix E.

soweit so gut -> die 3 Typen elementarer Zeilenumf. sind:

1) Vertausschen zweier Zeilen
2) Multiplizieren einer Zeile mit Faktor ungl. null
3) Addition eines Vielfachen einer Zeile zu einer anderen!

für n=2 würde das ja so aussehen:

[mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] als Matrix und vertauschen von Zeile wäre für Typ 1: [mm] \pmat{ 0 & 1 \\ 1 & 0 } [/mm]  right?

Typ 2 -> Multiplikation mit Lambda:

[mm] \pmat{ e1 \\ \lambda * e2 } [/mm] =  [mm] \pmat{ 0 & 1 \\ \lambda & 0 } [/mm]

bin ich da aufn richtigen Weg?

Eine weitere Frage wäre: Sei A eine nxm Matrix - B eine mxn Matrix und E eine nxn einheitsmatrix - Welcher zussammenhang besteht zwischen EA und A bzw. zwischen BE und B?

lg


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Einheitsmatrix / Elementarm.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Di 29.04.2014
Autor: meili

Hallo,

> Gib für eine 2x2 Matrix  für die 3 Typen elementarer
> Zeilenumformungen alle möglichen Elementarmatrizen an ->
> Der Skalar ist mit Lambda zu bezeichnen
>  Eine Matrix E entsteht ja aus der Einheitsmatrix In durch
> eine einzige Elementare Zeilenumformung ... das wäre dann
> die Elementarmatrix E.
>  
> soweit so gut -> die 3 Typen elementarer Zeilenumf. sind:
>  
> 1) Vertausschen zweier Zeilen
>  2) Multiplizieren einer Zeile mit Faktor ungl. null
>  3) Addition eines Vielfachen einer Zeile zu einer
> anderen!
>  
> für n=2 würde das ja so aussehen:
>  
> [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm] als Matrix und vertauschen von
> Zeile wäre für Typ 1: [mm]\pmat{ 0 & 1 \\ 1 & 0 }[/mm]  right?

[ok]
Wenn man mit dieser angegebenen Elementarmatrix eine 2x2-Matrix von
links multipliziert werden die Zeilen der 2x2-Matrix vertauscht.

>  
> Typ 2 -> Multiplikation mit Lambda:
>  
> [mm]\pmat{ e1 \\ \lambda * e2 }[/mm] =  [mm]\pmat{ 0 & 1 \\ \lambda & 0 }[/mm]

Diese Matrix bewirkt (bei einer Multiplikation von links), dass die 1.Zeile
mit [mm] $\lambda$ [/mm] multipliziert wird, aber zusätzlich vertauscht sie auch noch
die Zeilen.

>
> bin ich da aufn richtigen Weg?

Für die Multiplikation mit Lambda gibt es 2 Elementarmatrizen, eine für die
Multiplikation der 1. Zeile und eine für die 2. Zeile.

Das Vertauschen mußt du aber noch unterbinden.
Multiplizieren geht schon.

>  
> Eine weitere Frage wäre: Sei A eine nxm Matrix - B eine
> mxn Matrix und E eine nxn einheitsmatrix - Welcher
> zussammenhang besteht zwischen EA und A bzw. zwischen BE
> und B?

Das könntest du einfach mal ausprobiern, für feste n und m.
EA = A
BE = B

>  
> lg
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]