matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEinheitengruppe Polynomring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Einheitengruppe Polynomring
Einheitengruppe Polynomring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitengruppe Polynomring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 So 12.10.2014
Autor: Picard

Hallo,

laut meinem Script beinhaltet die Einheitengruppe vom Ring [mm] (\IK[T],+,*) [/mm] genau die Polynome deren Grad gleich null ist.

D.h. doch, alle konstanten Polynome sind invertierbar. Oder?
Beispiel: p=3 das inverse dazu wäre dann q=1/3, also p*q=1. Sehe ich das richtig?

Wenn ich nun aber [mm] p=x^{2}+1 [/mm] habe warum ist [mm] q=\bruch{1}{x^{2}+1} [/mm] kein inverses Element? Mir ist klar, dass q kein konstantes Polynom ist, aber warum kann es kein inverses Element sein? Ist es vielleicht kein Polynom, sprich ist es kein Element aus [mm] \IK[T], [/mm] woran erkenne ich das?

Danke für eure Hilfe.

Gruß
Picard

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Einheitengruppe Polynomring: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 So 12.10.2014
Autor: UniversellesObjekt

Hallo,

> Hallo,
>  
> laut meinem Script beinhaltet die Einheitengruppe vom Ring
> [mm](\IK[T],+,*)[/mm] genau die Polynome deren Grad gleich null
> ist.
>  
> D.h. doch, alle konstanten Polynome sind invertierbar.
> Oder?
>  Beispiel: p=3 das inverse dazu wäre dann q=1/3, also
> p*q=1. Sehe ich das richtig?
>  
> Wenn ich nun aber [mm]p=x^{2}+1[/mm] habe warum ist
> [mm]q=\bruch{1}{x^{2}+1}[/mm] kein inverses Element?

Du musst zunächst einmal klarstellen, was hiermit gemeint ist. Ist nämlich $ a $ ein Element eines Ringes, so meint man mit $ 1/a $ üblicherweise dessen Inverses. Die Schreibweise setzt also voraus, dass die Invertierbarkeit von $ [mm] x^2+1$ [/mm] schon bekannt ist, was ja nicht der Fall ist.

> Mir ist klar,
> dass q kein konstantes Polynom ist, aber warum kann es kein
> inverses Element sein? Ist es vielleicht kein Polynom,
> sprich ist es kein Element aus [mm]\IK[T],[/mm] woran erkenne ich
> das?

Zum Beweis der Aussage betrachte die Grade. Nimm an, du hättest ein Inverses eines Nichtkonstanten Polynoms. Wieso muss das Produkt der beiden Polynome dann Grad $> 0$ haben? Wieso kann es also nicht $1$ sein?

> Danke für eure Hilfe.
>  
> Gruß
>  Picard
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]