matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungEingeschlossene Fläche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Eingeschlossene Fläche
Eingeschlossene Fläche < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eingeschlossene Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:42 Fr 20.10.2006
Autor: Miranda

Aufgabe
Funktion f (x)=x(x-3)² und g (x)=(x-2,5)²+1,75 sind gegeben-

Wie ist der Inhalt der eingeschlossen Fläche der beiden graphen f und g?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hello again!..

Ich habe noch eine Frage, ich soll dies berechen, hab sowas leider never gemacht... Würde mich über Hilfe sehr freuen...

Thanks

        
Bezug
Eingeschlossene Fläche: MatheBank!
Status: (Antwort) fertig Status 
Datum: 22:50 Fr 20.10.2006
Autor: informix

Hallo Miranda und [willkommenmr],

> Funktion f (x)=x(x-3)² und g (x)=(x-2,5)²+1,75 sind
> gegeben-
>  
> Wie ist der Inhalt der eingeschlossen Fläche der beiden
> graphen f und g?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hello again!..
>  
> Ich habe noch eine Frage, ich soll dies berechen, hab sowas
> leider never gemacht... Würde mich über Hilfe sehr
> freuen...
>  
> Thanks

[guckstduhier] MBFläche zwischen Graphen in unserer MBMatheBank

kurz zusammengefasst:
Schnittpunkte der Graphen durch Gleichsetzen der Terme bestimmen [mm] \rightarrow [/mm] Grenzen des Integrals
Differenzfunktion f(x) - g(x) integrieren: [mm] $|\integral_{x_1}^{x_2}{(f(x)-g(x)) dx} [/mm] |$

Gruß informix


Bezug
                
Bezug
Eingeschlossene Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Sa 21.10.2006
Autor: Miranda

Danke für deiine Hilfe!

Ich habe dies nun gerechnet und  durch Polynomdivision die granzen 10 und -4 ist das richig?

My way:

[mm] x^3-6x^2-9x=x^2-5x+8 [/mm]  |U

...
[mm] 0=x^3-7x^2+14x-8 [/mm]  (x-1)...

und dann weitergerechnet als ergebnis = 5/6b

Bezug
                        
Bezug
Eingeschlossene Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Sa 21.10.2006
Autor: Teufel

Hallo!

Das stimmt leider nicht.
Die Schnittpunkte der Grafen sind bei [mm] x_1=1, x_2=2 [/mm] und [mm] x_3=4. [/mm]

Und dann musst du die Schnittflächen zwischen den Grafen von 1 bis 2 und dann von 2 bis 4 berechnen.

[mm] Also:|\integral_{1}^{2}{(f(x)-g(x)) dx}|+|\integral_{2}^{4}{(f(x)-g(x)) dx}| [/mm]

Der Betrag sorgt dafür, dass negative Flächen wieder positiv werden. Negative Flächen kommen nämlich zustande, wenn du z.B. f(x)-g(x) rechnest, aber f(x) unter g(x) in dem Intervall verläuft!



Bezug
                                
Bezug
Eingeschlossene Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Sa 21.10.2006
Autor: Miranda

Danke für die nette hilfe aber wie komme ich auf 2 und 4?...wundere mich weil die polynomdivision gut aufgang

Bezug
                                        
Bezug
Eingeschlossene Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Sa 21.10.2006
Autor: Teufel

Kein Problem :)

Ja, sie geht gut auf.

Übrig bleiben sollte x²-6x+8=0, was du dann mit der p-q-Formel berechnen kannst. Und dort sollte dann [mm] x_2=2 [/mm] und [mm] x_3=4 [/mm] rauskommen!

Bezug
                                                
Bezug
Eingeschlossene Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Sa 21.10.2006
Autor: Miranda

wollte nochmal danke sagen und fragen
ob
$ [mm] Also:|\integral_{2}^{1}{(f(x)-g(x)) dx}|+|\integral_{4}^{2}{(f(x)-g(x)) dx}| [/mm] $

ob du da nicht die grenzen vertauscht hast ..? nich eg. von 1 bis 2 und von 2 bis 4?...

Danke!!

Bezug
                                                        
Bezug
Eingeschlossene Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Sa 21.10.2006
Autor: Teufel

Ja genau, hab sie vertauscht :) Sorry. Ich ändere es gleich um!

Und kein Problem!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]