matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungEingeschlossene Fläche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Eingeschlossene Fläche
Eingeschlossene Fläche < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eingeschlossene Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:23 Mi 18.06.2014
Autor: Ice-Man

Gegeben ist eine Funktion [mm] f(x)=2x^{3}-6x^{2} [/mm] und eine Funktion g(x)=2x-6
Berechnen Sie den Inhalt der von den Grafen g(x) und f(x) eingeschlossenen Fläche.


Auf Grund der Schnittpunkte [mm] S_{1}=-1;-8 S_{2}=1;-4 [/mm] und [mm] S_{3}=3;0 [/mm] müsste ich doch hier 3 einzel Flächen bestimmen und diese dann aufaddieren, oder?

Durch differenz erhalte ich [mm] 2x^{3}-6x^{2}-2x+6, [/mm] durch raten wurde eine Nullstelle von x=3 gelöst. Die beiden anderen  Nullstellen von 1 und -1 wurden durch Polynomdivision und p-q Formel ermittelt.

(Kann mir dann in dem Zusammenhang evtl. auch jemand sagen warum die Polynomdivision mit x-1 nicht funktioniert?)

Anschließend habe ich die resultierende Funktion mit [mm] r=2x^{3}-6x^{2}-2x+6 [/mm] integriert und erhalte das Integral [mm] 0,5x^{4}-2x^{3}-x^{2}+6x [/mm]

Nun habe ich die Fläche berechnet, und das in 3 Teilen. Von -1 bis 0, dann von 0 bis 1 und anschließend von 1 bis 3. Somit erhalte ich eine Fläche von 16 FE.



Könnte mir evtl. jemand sagen ob mein Vorgehen richtig ist?


Vielen Dank.

        
Bezug
Eingeschlossene Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 07:35 Mi 18.06.2014
Autor: Richie1401

Morgen,

> Gegeben ist eine Funktion [mm]f(x)=2x^{3}-6x^{2}[/mm] und eine
> Funktion g(x)=2x-6
>  Berechnen Sie den Inhalt der von den Grafen g(x) und f(x)
> eingeschlossenen Fläche.
>  
>
> Auf Grund der Schnittpunkte [mm]S_{1}=-1;-8 S_{2}=1;-4[/mm] und
> [mm]S_{3}=3;0[/mm] müsste ich doch hier 3 einzel Flächen bestimmen
> und diese dann aufaddieren, oder?

Sieht ja furchtbar aus!
[mm] S_1(-1,-8) [/mm]

[mm] S_2(1,-4) [/mm]

[mm] S_3(3,0) [/mm]

>  
> Durch differenz erhalte ich [mm]2x^{3}-6x^{2}-2x+6,[/mm] durch raten
> wurde eine Nullstelle von x=3 gelöst. Die beiden anderen  
> Nullstellen von 1 und -1 wurden durch Polynomdivision und
> p-q Formel ermittelt.

Hehe, die Stellen hast du doch schon oben gefunden! Keine Ahnung wie du das gemacht hast, vielleicht durch Raten oder durch draufstarren.

>  
> (Kann mir dann in dem Zusammenhang evtl. auch jemand sagen
> warum die Polynomdivision mit x-1 nicht funktioniert?)

Doch, das sollte funktionieren!

>  
> Anschließend habe ich die resultierende Funktion mit
> [mm]r=2x^{3}-6x^{2}-2x+6[/mm] integriert und erhalte das Integral
> [mm]0,5x^{4}-2x^{3}-x^{2}+6x[/mm]
>  
> Nun habe ich die Fläche berechnet, und das in 3 Teilen.
> Von -1 bis 0, dann von 0 bis 1 und anschließend von 1 bis
> 3. Somit erhalte ich eine Fläche von 16 FE.

Passt!

>  
>
>
> Könnte mir evtl. jemand sagen ob mein Vorgehen richtig
> ist?

Richtig ja, kommentiert hast du auch. Aber das erinnert mehr an Prosa als an Mathe! Kein einziges Integral steht hier. Alles nur Laber laber.

Also obige Schnittpunkte haben wir. Weiter ist [mm] f(x)=2x^{3}-6x^{2} [/mm] und g(x)=2x-6.

Dann berechnet sich der Flächeninhalt über

   [mm] A=\int_{x_1}^{x_2}|f(x)-g(x)|dx=\int_{-1}^3|2x^{3}-6x^{2}-2x+6|dx=\int_{-1}^1({2x^{3}-6x^{2}-2x+6})dx+\int_1^3({-2x^{3}+6x^{2}+2x-6})dx=...=16FE [/mm]

>  
>
> Vielen Dank.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]