matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEine Untergruppe von S4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Eine Untergruppe von S4
Eine Untergruppe von S4 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eine Untergruppe von S4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 So 21.11.2010
Autor: MatheStudi7

Aufgabe
Uberprüfen Sie, ob die folgende Teilmenge U eine Untergruppe der gegebenen Gruppe G ist:
G = [mm] S_{4}, [/mm] U = { [mm] \pi \in [/mm] G | [mm] \pi [/mm] ist keine Transposition }

Hi,

ich hab mir als erstes überlegt, welche Elemente aus [mm] S_{4} [/mm] keine Transpositionen sind:

U={(123),(132),(124),(142),(134),(143),(234),(243),(1234),(1243),(1324),(1342),id}

Ist U leer?
Nein, da zB id [mm] \in [/mm] U

Ist U Abgeschlossen?
Wie mache ich das? Ich kann ja jetzt nicht alle möglichen Verknüpfungen aufschreiben...

Ist U assoziativ?
Ja, das bereits G assoziativ

Gibt es ein neutrales Element?
id [mm] \in [/mm] U ist neutrales Element, das für alle [mm] \pi \in [/mm] U gilt:
id [mm] \circ \pi [/mm] = pi

Gibt es ein inverses Element in U für alle [mm] \pi \in [/mm] u?
Auch hier: muss ich jetzt für alle [mm] \pi \in [/mm] U das Inverse auflisten?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ciao

        
Bezug
Eine Untergruppe von S4: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 So 21.11.2010
Autor: Lippel

Hallo,

>  Hi,
>  
> ich hab mir als erstes überlegt, welche Elemente aus [mm]S_{4}[/mm]
> keine Transpositionen sind:
>  
> U={(123),(132),(124),(142),(134),(143),(234),(243),(1234),(1243),(1324),(1342),id}

Hier fehlen Elemente: $(1423),(1432),(12)(34),(13)(24),(14)(23)$
Die [mm] $S_4$ [/mm] besteht aus $4!=24$ Elementen, so hast du dann alle 18 außer den sechs Transpositionen.

>  
> Ist U leer?
>  Nein, da zB id [mm]\in[/mm] U
>  
> Ist U Abgeschlossen?
>  Wie mache ich das? Ich kann ja jetzt nicht alle möglichen
> Verknüpfungen aufschreiben...

Berechne mal $(1234)(243)$, dann wirst du sehn, dass die Menge nicht abgeschlossen ist, also keine Untergruppe, damit erledigt sich auch der ganze Rest.

Falls es dich interessiert: Man kann das auch abstrakter formulieren, über den Satz von Lagrange, der besagt, dass die Ordnung einer Untergruppe (also die Anzahl der Elemente) bei einer endlichen Gruppe die Ordnung der Gruppe teilen muss. Hier sieht man direkt dass $|U|=18$ teilt nicht [mm] $|S_4|=24$, [/mm] also kann es sich nicht um eine Untergruppe handeln.

Viele Grüße, Lippel

Bezug
                
Bezug
Eine Untergruppe von S4: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 So 21.11.2010
Autor: MatheStudi7

Hallo Lippel, danke für die shcnelle Antwort.

>  Hier fehlen Elemente:
> [mm](1423),(1432),(12)(34),(13)(24),(14)(23)[/mm]
>  Die [mm]S_4[/mm] besteht aus [mm]4!=24[/mm] Elementen, so hast du dann alle
> 18 außer den sechs Transpositionen.
>  

Ich dachte, dass zB (12)(34) eine Transposition ist, quasi eine Permutation, die zwei Transpositionen gleichzeitig durchführt.

> >  

> > Ist U leer?
>  >  Nein, da zB id [mm]\in[/mm] U
>  >  
> > Ist U Abgeschlossen?
>  >  Wie mache ich das? Ich kann ja jetzt nicht alle
> möglichen
> > Verknüpfungen aufschreiben...
>  
> Berechne mal [mm](1234)(243)[/mm], dann wirst du sehn, dass die
> Menge nicht abgeschlossen ist, also keine Untergruppe,
> damit erledigt sich auch der ganze Rest.

OK, das vereinfacht die ganze Sache natürlich immens :-).

>  
> Falls es dich interessiert: Man kann das auch abstrakter
> formulieren, über den Satz von Lagrange, der besagt, dass
> die Ordnung einer Untergruppe (also die Anzahl der
> Elemente) bei einer endlichen Gruppe die Ordnung der Gruppe
> teilen muss. Hier sieht man direkt dass [mm]|U|=18[/mm] teilt nicht
> [mm]|S_4|=24[/mm], also kann es sich nicht um eine Untergruppe
> handeln.
>  
> Viele Grüße, Lippel

Ja interessiert mich schon, leider haben wir das in der Vorlesung noch nicht gehabt. Aber danke für den Hinweis

Ciao


Bezug
                        
Bezug
Eine Untergruppe von S4: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 So 21.11.2010
Autor: Lippel

Hallo,

> Hallo Lippel, danke für die shcnelle Antwort.
>  
> >  Hier fehlen Elemente:

> > [mm](1423),(1432),(12)(34),(13)(24),(14)(23)[/mm]
>  >  Die [mm]S_4[/mm] besteht aus [mm]4!=24[/mm] Elementen, so hast du dann
> alle
> > 18 außer den sechs Transpositionen.
>  >  
> Ich dachte, dass zB (12)(34) eine Transposition ist, quasi
> eine Permutation, die zwei Transpositionen gleichzeitig
> durchführt.

Theoretisch kannst du jedes Element einer [mm] $S_n$ [/mm] in Transpositionen zerlegen, z.B. $(1234)=(12)(23)(24)$ und sogar $id=(12)(21)$, also müssen solche Verknüpfungen von Transpositionen, die man nicht als nur eine Transposition darstellen kann, schon in der Untergruppe liegen, sonst wäre sie nämlich leer.

Grüße, Lippel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]