Eine Folge und Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:28 Fr 24.10.2008 | Autor: | Parkan |
Aufgabe | Die Folge a1, a2, a3,...,an sei monoton und beschränkt, d.h. an+1 [mm] \ge [/mm] an für alle n und |an| [mm] \le [/mm] S für alle n und eine Positive Zahl S.
Zeige: Es gibt genau eine Zahl W mit folgender Eigenschaft: In jeder Umgebung (offene Intervalle) um W liegen, mit ausnahme endlich vieler, alle Glieder der Folge an.
Anm.: W heisst Grenzwert der Folge an. |
Ich habe jetzt ganz lange überlegt und eine Zeichnung dafür gemacht. Ich nehm an das die gesuchte Zahl 0 ist.
Weil wenn ich das richtig verstanden habe, 0 die einzige Zahl ist die |an| [mm] \le [/mm] S erfüllt. Ausserdem liegt ja die Null genau in der Mitte.
Das Problem ist aber das es ich stark vermute das |an| [mm] \le [/mm] S nicht nur 0 erfüllt und dann könnte das ales sein...
Könnte mir jemand bei der Aufgabe einen Tipp geben?
Ich wäre sehr dankbar.
Grüße
Nina
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:54 Fr 24.10.2008 | Autor: | Marcel |
Hallo Nina,
> Die Folge a1, a2, a3,...,an sei monoton und beschränkt,
> d.h. an+1 [mm]\ge[/mm] an für alle n
dann sollte dort besser monoton wachsend stehen!
> und |an| [mm]\le[/mm] S für alle n und
> eine Positive Zahl S.
>
> Zeige: Es gibt genau eine Zahl W mit folgender Eigenschaft:
> In jeder Umgebung (offene Intervalle) um W liegen, mit
> ausnahme endlich vieler, alle Glieder der Folge an.
>
> Anm.: W heisst Grenzwert der Folge an.
> Ich habe jetzt ganz lange überlegt und eine Zeichnung
> dafür gemacht. Ich nehm an das die gesuchte Zahl 0 ist.
> Weil wenn ich das richtig verstanden habe, 0 die einzige
> Zahl ist die |an| [mm]\le[/mm] S erfüllt. Ausserdem liegt ja die
> Null genau in der Mitte.
>
> Das Problem ist aber das es ich stark vermute das |an| [mm]\le[/mm]
> S nicht nur 0 erfüllt und dann könnte das ales sein...
>
> Könnte mir jemand bei der Aufgabe einen Tipp geben?
Ich verstehe Deine Überlegungen nicht so ganz. Bei jeder solchen Folge [mm] $(a_n)_n$ [/mm] ist die Zahl $S$ abhängig von der Folge, und auch der Grenzwert ist abhängig von der Folge.
Beispiele für solche Folgen (ich gebe zudem mal den Grenzwert hier mit an, da er offensichtlich ist):
1.) [mm] $(a^{(1)}_n)_n$ [/mm] mit [mm] $a_n:=1-\frac{1}{n}$ [/mm] ist beschränkt (z.B. betrachte $S=1$) und konvergiert gegen $W=1$.
2.) [mm] $(a^{(2)}_n)_n$ [/mm] mit [mm] $a_n:=\pi-\frac{1}{n}$ [/mm] ist beschränkt (z.B. betrachte $S=4$) und konvergiert gegen [mm] $W=\pi$. [/mm]
3.) [mm] $(a^{(3)}_n)_n$ [/mm] mit [mm] $a_n:=\;-\;\frac{11}{4}-\frac{1}{n}$ [/mm] ist beschränkt (z.B. betrachte $S=3$) und konvergiert gegen [mm] $W=\;-\;\frac{11}{4}$. [/mm]
Aber die Lösung der Aufgabe steckt schon in wenig in dem Begriff der kleinsten oberen Schranke.
Mache folgendes:
Sei [mm] $(a_n)_n$ [/mm] eine monoton wachsende Folge und sei $S > 0$ mit [mm] $|a_n| \le [/mm] S$ für alle $n [mm] \in \IN$.
[/mm]
Nun betrachte die Menge [mm] $M:=\{s \in \IR:\;a_n \le s\;\text{ für alle }n \in \IN\}\,.$ [/mm] Dann ist $M [mm] \not=\emptyset$ [/mm] (Warum?) und außerdem ist [mm] $\black{M}$ [/mm] nach unten beschränkt (Warum? Tipp: $s [mm] \in [/mm] M [mm] \Rightarrow [/mm] s [mm] \ge a_1$ [/mm] liefert diese Behauptung. Warum?)
Also existiert [mm] $\text{inf}(M)\,.$ [/mm] Wie sollte man nun [mm] $\black{W}$ [/mm] definieren? Vergesse nicht, zu begründen, dass für dieses [mm] $\black{W}$ [/mm] dann auch die geforderte Eigenschaft gilt: "In jeder Umgebung (offene Intervalle) um [mm] $\black{W}$ [/mm] liegen, mit Ausnahme endlich vieler, alle Glieder der Folge."
Das wäre dann die Existenz einer Zahl [mm] $\black{W}$ [/mm] wie gewünscht. Vergesse dann nicht, dass Du auch deren Eindeutigkeit beweisen musst. Sei nun also [mm] $\black{W}'$ [/mm] so, dass in jeder Umgebung von [mm] $\black{W}'$ [/mm] alle, bis auf endlich viele, Folgeglieder der Folge [mm] $(a_n)_n$ [/mm] liegen und folgere dann, dass [mm] $\black{W}'=W$ [/mm] gelten muss.
Dazu:
[mm] $\black{W}'=W$ $\gdw$ $|\black{W}'-W|=0$. [/mm] Und nun gilt [mm] $|\black{W}'-W|=|\black{W}'-a_n+a_n-W| \le |\black{W}'-a_n|+|a_n-W|$ [/mm] für jedes $n [mm] \in \IN$ [/mm] und die rechte Seite davon bekommt man beliebig klein. Das musst Du nun nur noch ein wenig sorgfältiger aufschreiben...
Gruß,
Marcel
|
|
|
|