matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenEine Aufgabe zu Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Eine Aufgabe zu Vektoren
Eine Aufgabe zu Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eine Aufgabe zu Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 So 23.03.2014
Autor: Grundkurshaber

Aufgabe 1
Gegeben ist ein Dreieck mit den Eckpunkten A (4/2/-2), B (1/6/-2) und C (1/2/2).

Ein in A stehender Affenmutant wird von einer Kraft [mm] \vec{FC} [/mm] in Richtung C gezogen, gleichzeitig von einer weiteren Kraft [mm] \vec{FB} [/mm] in Richtung B. Die Stärke der Kräfte [mm] \vec{FC} [/mm] und [mm] \vec{FB} [/mm] entspricht den jeweiligen Streckenlängen AB bzw. AC, wobei 1 LE = 1 [kN] (N steht für Newton) ist.
Berechnen Sie Richtung und Stärke (auf volle Werte für Newton auf- bzw. abrunden) der resultierenden Kraft [mm] \vec{FB&C} [/mm]

Aufgabe 2
Fällt die Kraft in [mm] \vec{FC} [/mm] aus (zum Beispiel Seil reisst), so saust der Affenmutant ungebremst in Richtung der aus seiner Sicht hinter B stehenden, durch y- und z-Achsen aufgespannten Wand. Wo befindet sich das Äffchen, wenn es ihn dort zerlegt? Wohin geht die Reise wenn der Affenmutant in der Art einer Billardkugel abprallt (hier muss die entsprechende Parametergleichung der den Reiseweg beschreibenden Geraden angegeben werden)?

Hallo,

leider versteh ich die gestellte Aufgabe nicht wirklich.

Die Stärke der Kräfte [mm] \vec{FC} \vec{FB} [/mm] entsprechen den Streckenlängen AB und AC, d. h. man müsste die Abstände zwischen A und B, sowie A und C ausrechnen:

d(A;B) = [mm] \wurzel{(b1-a1)²+(b2-a2)² + (b3-a3)²} [/mm]
           =wurzel{(1-4)²+(6-2)² + ((-2)-(-2))²}
           = 5

d (A; C) = ebenfalls 5

Heißt das, die Stärke der resultierenden Kraft [mm] \vec{FB&C} [/mm] wäre 5 kN + 5 kN = 10 kN = 10000?
Kann ja eigentlich nicht sein, sonst würde mein Tutor ja kaum den Hinweis mit auf bzw. abrunden geben?

Und soll man bei der Richtung dann die Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] addieren?

[mm] \vec{a} [/mm] =  [mm] \overrightarrow{AB} [/mm] = (-3/4/0)
[mm] \vec{b} [/mm] = [mm] \overrightarrow{AC} [/mm] = (-3/0/4)

also: (-3)*(-3) +(4*0) + (0*4) = 9? - Nein, das ist auch nicht der wahre Hugo.

Über eine kleine Hilfe würde ich mich sehr freuen.

Vielen Dank

Grundkurshaber

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Eine Aufgabe zu Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 So 23.03.2014
Autor: moody


> Heißt das, die Stärke der resultierenden Kraft [mm]\vec{FB&C}[/mm]
> wäre 5 kN + 5 kN = 10 kN = 10000?
> Kann ja eigentlich nicht sein, sonst würde mein Tutor ja
> kaum den Hinweis mit auf bzw. abrunden geben?

Das siehst du richtig, das ist nicht ganz korrekt. Mach dir mal eine Zeichnung und überlege dir im 2D wie die resultierende Kraft von 2 Kräften wohl aussieht und welchen Betrag sie hat. Hierzu auch mal den nächsten Aufgabenteil im Hinterkopf behalten.

> Und soll man bei der Richtung dann die Vektoren [mm]\vec{a}[/mm] und
> [mm]\vec{b}[/mm] addieren?
>  
> [mm]\vec{a}[/mm] =  [mm]\overrightarrow{AB}[/mm] = (-3/4/0)
>  [mm]\vec{b}[/mm] = [mm]\overrightarrow{AC}[/mm] = (-3/0/4)
>  
> also: (-3)*(-3) +(4*0) + (0*4) = 9? - Nein, das ist auch
> nicht der wahre Hugo.

Kann ja auch nicht, wieso sollte denn bei der Addition von 2 Vektoren ein Skalar rauskommen, und kein Vektor?

[mm] $\vektor{a \\ b \\ c} [/mm] + [mm] \vektor{a \\ b \\ c} [/mm] =  [mm] \vektor{a+a \\ b+b \\ c+c}$ [/mm]

Wie sieht's denn so aus? ;)

lg moody

Bezug
                
Bezug
Eine Aufgabe zu Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 So 23.03.2014
Autor: Grundkurshaber

Vielen Dank für die Antwort.


> >Mach
> dir mal eine Zeichnung und überlege dir im 2D wie die
> resultierende Kraft von 2 Kräften wohl aussieht

Kann es sein, daß sie auf das Kräfteparallelogramm anspielen.
Als Nicht-Physik-Grundkurshaber kann ich mich zumindest noch erinnern, dass bspw. die Kraft 1 und die Kraft 2 zusammenaddiert die Kraft 1+2 ergeben, die senkrecht im Winkel der beiden Kräfte eingezeichnet wird.

Das durch [mm] \vec{AB} [/mm] und [mm] \vec{AC} [/mm] aufgespannte Dreieck kann wahrscheinlich auch als Kräfteparallelogramm gezeichnet werden, demnach müsse man die Kraft von [mm] \vec{AB} [/mm] und [mm] \vec{AC} [/mm] addieren, aber das sind laut Aufgabe doch die Streckenlängen und die betragen 5 kN - oder?


> Kann ja auch nicht, wieso sollte denn bei der Addition von 2 Vektoren ein
> Skalar rauskommen, und kein Vektor?

> $ [mm] \vektor{a \\ b \\ c} [/mm] + [mm] \vektor{a \\ b \\ c} [/mm] = [mm] \vektor{a+a \\ b+b \\ c+c} [/mm] $

Demnach müsse der Richtung

$ [mm] \vektor{-3 \\ 4 \\ 0} [/mm] + [mm] \vektor{-3 \\ 0 \\ 4} [/mm] = [mm] \vektor{0 \\ 4 \\4} [/mm] $  sein.

Vielen Dank nochmal.


Bezug
                        
Bezug
Eine Aufgabe zu Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 So 23.03.2014
Autor: moody


> Das durch [mm]\vec{AB}[/mm] und [mm]\vec{AC}[/mm] aufgespannte Dreieck kann
> wahrscheinlich auch als Kräfteparallelogramm gezeichnet
> werden, demnach müsse man die Kraft von [mm]\vec{AB}[/mm] und
> [mm]\vec{AC}[/mm] addieren, aber das sind laut Aufgabe doch die
> Streckenlängen und die betragen 5 kN - oder?

[ok] bis auf den Betrag.
[Dateianhang nicht öffentlich]
Du kannst dir in diesem Fall anhand des Dreiecks was man aufzeichen kann klar machen ob [mm] $|F_{res}|$ [/mm] wirklich die Summe aus [mm] $|F_{1}|$ [/mm] und [mm] $|F_{2}|$ [/mm] ist.
Nun überlege dir von welchem Vektor du den Betrag bilden musst :)

> > Kann ja auch nicht, wieso sollte denn bei der Addition von
> 2 Vektoren ein
>  > Skalar rauskommen, und kein Vektor?

>  
> > [mm]\vektor{a \\ b \\ c} + \vektor{a \\ b \\ c} = \vektor{a+a \\ b+b \\ c+c}[/mm]
>  
> Demnach müsse der Richtung
>  
> [mm]\vektor{-3 \\ 4 \\ 0} + \vektor{-3 \\ 0 \\ 4} = \vektor{0 \\ 4 \\4}[/mm]
>  sein.

$-3 + -3 = 0$ rechne hier nochmal nach.

Übrigens duzen wir uns hier ;)

lg moody

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
Eine Aufgabe zu Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 So 23.03.2014
Autor: Grundkurshaber


> [Dateianhang nicht öffentlich]
>  Du kannst dir in diesem Fall anhand des Dreiecks was man
> aufzeichen kann klar machen ob [mm]|F_{res}|[/mm] wirklich die Summe
> aus [mm]|F_{1}|[/mm] und [mm]|F_{2}|[/mm] ist.
> Nun überlege dir von welchem Vektor du den Betrag bilden
> musst :)

Kann sein, daß ich jetzt beschackert bin, aber der Betrag von [mm] \vec{AB} [/mm] wäre ja

((-3)²+(4)²+(0)² = 25

Betrag [mm] \vec{AC} [/mm] wäre ebenfalls 25.

25 + 25 = 50

> $ -3 + -3 = 0 $ rechne hier nochmal nach.

Oh nein, wie peinlich. Die Richtung der Stärke (bzw. der Vektor) wäre dann (6/4/4).

lg Grundkurshaber





Bezug
                                        
Bezug
Eine Aufgabe zu Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 So 23.03.2014
Autor: moody


> > [Dateianhang nicht öffentlich]
>  >  Du kannst dir in diesem Fall anhand des Dreiecks was
> man
> > aufzeichen kann klar machen ob [mm]|F_{res}|[/mm] wirklich die Summe
> > aus [mm]|F_{1}|[/mm] und [mm]|F_{2}|[/mm] ist.
> > Nun überlege dir von welchem Vektor du den Betrag bilden
> > musst :)
>  
> Kann sein, daß ich jetzt beschackert bin, aber der Betrag
> von [mm]\vec{AB}[/mm] wäre ja
>  
> ((-3)²+(4)²+(0)² = 25
>  
> Betrag [mm]\vec{AC}[/mm] wäre ebenfalls 25.
>  
> 25 + 25 = 50

Sieh dir nochmal an was ich geschrieben habe. Ist $| [mm] \vec{AC}| [/mm] + [mm] |\vec{AB} [/mm] |$
wirklich dasselbe wie [mm] $|F_{res}|$? [/mm]
Wenn du doch den Vektor für  [mm] \vec{F_{res}} [/mm] bestimmt hast, warum verwendest du diesen Vektor dann nicht auch den Betrag dieses Vektors zu bestimmen? Ist ja eigentlich das naheliegendste.

lg moody

Bezug
                                                
Bezug
Eine Aufgabe zu Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 So 23.03.2014
Autor: Grundkurshaber


>  Wenn du doch den Vektor für  [mm]\vec{F_{res}}[/mm] bestimmt hast,
> warum verwendest du diesen Vektor dann nicht auch den
> Betrag dieses Vektors zu bestimmen? Ist ja eigentlich das
> naheliegendste.
>
> lg moody

Ach so, dann bin ich doch nicht beschackert und der Vektor bzw. die Stärke der resultierenden Kraft [mm] \vec{FB&C} [/mm] wäre

(6)²+(4)²+(4)² = 68 =>  68kN = 68000N?

Bezug
                                                        
Bezug
Eine Aufgabe zu Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 So 23.03.2014
Autor: moody


> (6)²+(4)²+(4)² = 68 =>  68kN = 68000N?

Du hast die Wurzel vergessen ;)

Bezug
                                                                
Bezug
Eine Aufgabe zu Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 So 23.03.2014
Autor: Grundkurshaber

Achso, dann ist die Kraft 8,25 kN = 8250 N und die Richtung würde (6/4/4) betragen. Danke!

Bei Aufgabe 2 müsste man doch dann einen Punkt hinter B (1/6/-2) bestimmen - das könnte quasi überall hinter diesem Punkt sein, oder?

Danke

Grundkurshaber

Bezug
                                                                        
Bezug
Eine Aufgabe zu Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 So 23.03.2014
Autor: moody


> Bei Aufgabe 2 müsste man doch dann einen Punkt hinter B
> (1/6/-2) bestimmen - das könnte quasi überall hinter
> diesem Punkt sein, oder?

Nicht irgendeinen Punkt sondern den Punkt an dem der Affe gegen die von y und z Achse aufgespannte Ebene stößt.

lg moody

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]