matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieEindeutigkeit von Dichten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Eindeutigkeit von Dichten
Eindeutigkeit von Dichten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eindeutigkeit von Dichten: Gegenbeispiel
Status: (Frage) beantwortet Status 
Datum: 16:07 Sa 24.10.2009
Autor: Irmchen

Hallo!

Ich bereite mich für eine Prüfung vor und gehe die komplette Vorlesung zurzeit durch...Da diese aber sehr knapp  geschieben wurdem und  zum Teil nur Stichpunkte enthält, habe ich teilweise Schwierigkeiten den Sachverhalt nachzuvollziehen. Wie z.B im folgenden Gegenbeispiel.

Das Gegenbeispiel bezieht sich auf das folgen Lemma:

Seine [mm] f, g \ge 0 [/mm].

(a) [mm] f = g \ \mu [/mm] f.ü.  [mm] \Rightarrow f \mu = g \mu [/mm]
(b) Ist f oder g integrierbar, so gilt die Umkehrung von (a)


Gegenbeispiel :

[mm] \mu [/mm] triviales Maß auf [mm] ( \mathbb{R} , \mathcal B ) [/mm] .

[mm] \mu(A)=\left\{\begin{matrix} 0, & \mbox{wenn } A \ne \emptyset \\ \infty, & sonst \end{matrix}\right. [/mm]

(1) [mm] \forall \ k > 0 \ \ k \mu = \mu [/mm]

(2) [mm] \epsilon_{0} \ll \mu [/mm] aber [mm] \epsilon_0 [/mm] keine [mm] \mu [/mm] - Dichte.

[mm] f \ge 0 [/mm]     [mm] \integral f 1_A d \mu=\left\{\begin{matrix} \infty, & sonst \\ 0, & \mbox{wenn } f 1_A = 0 \end{matrix}\right. [/mm]


Ich kann gerade nicht nachvollziehen warum dies das Gegenbeispiel ist ....

Ich hoffe, das jemand mir dabei hilft!

Vielen Dank!

Gruß
Irmchen


        
Bezug
Eindeutigkeit von Dichten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Sa 24.10.2009
Autor: rainerS

Hallo Irmchen!

> Ich bereite mich für eine Prüfung vor und gehe die
> komplette Vorlesung zurzeit durch...Da diese aber sehr
> knapp  geschieben wurdem und  zum Teil nur Stichpunkte
> enthält, habe ich teilweise Schwierigkeiten den
> Sachverhalt nachzuvollziehen. Wie z.B im folgenden
> Gegenbeispiel.
>  
> Das Gegenbeispiel bezieht sich auf das folgen Lemma:
>  
> Seine [mm]f, g \ge 0 [/mm].

> (a) [mm]f = g \ \mu[/mm] f.ü.  [mm]\Rightarrow f \mu = g \mu[/mm]
>  (b) Ist f
> oder g integrierbar, so gilt die Umkehrung von (a)
>  
>
> Gegenbeispiel :
>  
> [mm]\mu[/mm] triviales Maß auf [mm]( \mathbb{R} , \mathcal B )[/mm] .
>  
> [mm]\mu(A)=\left\{\begin{matrix} 0, & \mbox{wenn } A \ne \emptyset \\ \infty, & sonst \end{matrix}\right. [/mm]

Umgekehrt:

[mm]\mu(A)=\begin{cases} 0, & \mbox{wenn } A \red{=} \emptyset \\ \infty, & \mbox{sonst } \end{cases}[/mm]

> (1) [mm]\forall \ k > 0 \ \ k \mu = \mu[/mm]

Egal welche positive reelle Zahl $k$ du wählst, das Maß ändert sich durch Multiplikation nicht, denn $k*0=0$.

Hier sind $f$ und $g$ konstante Funktionen, nämlich $f=k$ und $g=1$. Also sind $f$ und $g$ nicht [mm] $\mu$-fast [/mm] überall identisch. Es gilt aber [mm] $f\mu [/mm] =g [mm] \mu$, [/mm] auch wenn [mm] $k\not=1$ [/mm] ist. $f$ und $g$ sind nicht integrierbar, denn die Integrale [mm] $\int fd\mu=\infty$ [/mm] und [mm] $\int gd\mu=\infty$. [/mm]

>  
> (2) [mm]\epsilon_{0} \ll \mu[/mm] aber [mm]\epsilon_0[/mm] keine [mm]\mu[/mm] - Dichte.

Also das verstehe ich auch nicht


Viele Grüße
   Rainer


Bezug
                
Bezug
Eindeutigkeit von Dichten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 So 25.10.2009
Autor: Irmchen

Vielen lieben Dank!

Jetzt habe ich zumindest den größten Teil verstanden!

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]