matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEindeutigkeit Kreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Eindeutigkeit Kreis
Eindeutigkeit Kreis < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eindeutigkeit Kreis: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:14 Sa 21.06.2008
Autor: crazyhuts1

Aufgabe
1) Es seien drei paarweise verschiedene nicht kollineare Punkte A,B,C des [mm] R^2 [/mm] gegeben. Zeigen Sie, dass es genau einen Kreis gibt, der die drei Punkte enthält.

Hallo,
die Tatsache, dass es einen Kreis gibt, sollen wir nicht mehr zeigen, nur die Eindeutigkeit. Man könnte also vielleicht den Kreis durch eine Gleichung angeben, in der die drei Punkte den Kreis bestimmen, dann annehmen, dass es einen weiteren Kreis durch die drei Punkte gäbe und das dann zu einem Widerspruch führen.
Aber wie kann ich die Kreisgleichung mit Hilfe der drei Punkte aufstellen? Wir haben für den Kreis:
Kr(M): [mm] (\vec{x}-\vec{m})*(\vec{x}-\vec{m})=r^2 [/mm]
Wobei ich denke, dass x ein beliebiger Punkt auf dem Kreis ist und m der Vektor zum Mittelpunkt. Einen beliebigen Punkte auf dem Kreis hätte ich ja zur Verfügung, aber wie berechne ich den Vektor m aus den gegebenen drei Punkten? Da komme ich mit Vektorrechnung gerade nicht weiter, da ich doch um M auszudrücken durch die Punkte immer auch M verwenden muss.
Kann mir jemand weiterhelfen und einen Tipp geben, wie das gehen könnte?
Viele Grüße,
Anna

        
Bezug
Eindeutigkeit Kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Sa 21.06.2008
Autor: koepper

Hallo Anna,

argumentiere, daß der Mittelpunkt eines solchen Kreises sowohl auf der Mittelsenkrechten durch A und B als auch auf der Mittelsenkrechten durch B und C liegen muß. Diese Mittelsenkrechten können nicht parallel sein, weil A, B und C nicht auch einer Geraden liegen, also schneiden sie sich in genau einem Punkt. Nur dieser Punkt kommt also als Mittelpunkt eines solchen Kreises in Frage. Da der Radius aus dem (gemeinsamen) Abstand dieses Punktes zu A, B und C eindeutig bestimmt ist, gibt es also nicht mehr als einen solchen Kreis.

LG
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]